Skip to main content
Book cover

Obesity pp 109–126Cite as

The Microbiota and Energy Balance

  • Reference work entry
  • First Online:

Part of the book series: Endocrinology ((ENDOCR))

Abstract

Human gut microbiota consists of trillions of microorganisms which participate actively in host metabolism. Recent advances in bioinformatic and molecular biology (bacterial genome sequencing) have allowed for exploring in depth the relationship between gut microbiota and obesity-associated metabolic disturbances. A large number of studies in animal models and humans indicate that gut microbiota is linked with the onset and development of metabolic disorders, such as obesity. The abundance and the composition of the gut microbiota are conditioned by metabolic state of the host, including the degree of obesity and insulin sensitivity, and by exogenous factors, such as diet and medication. Experiments in rodents demonstrated that the microbiota can modulate both energy balance and energy stores through the production of specific molecules. In this chapter, we will summarize the existing evidence supporting the possible role of gut microbiota and energy balance in both – animal and human – models, the pathophysiological mechanisms underlying these effects and potential novel therapeutic targets in obesity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3:559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azad MB, Bridgman SL, Becker AB, et al. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes. 2014;38:1290–8.

    Article  CAS  Google Scholar 

  • Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA. 2007;104:979–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bailey LC, Forrest CB, Zhang P, et al. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;68:1063–9.

    Article  Google Scholar 

  • van der Beek CM, Canfora EE, Lenaerts K, et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond). 2016;130:2073–82.

    Article  Google Scholar 

  • Boursi B, Mamtani R, Haynes K, Yang YX. The effect of past antibiotic exposure on diabetes risk. Eur J Endocrinol. 2015;172:639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressa C, Bailén-Andrino M, Pérez-Santiago J, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS One. 2017;12:e0171352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butaye P, Devriese L, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. 2003;16:175–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne CS, Chambers ES, Alhabeeb H, et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr. 2016;104:5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–91.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho BM, Guadagnini D, Tsukumo DM, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55:2823–34.

    Article  CAS  PubMed  Google Scholar 

  • Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc. 2015;74:328–36.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier C, Stojanović O, Colin DJ, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360–74.

    Article  CAS  PubMed  Google Scholar 

  • Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    Article  CAS  PubMed  Google Scholar 

  • Cotillard A, Kennedy SP, Kong LC, et al. ANR MicroObes consortium. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.

    Article  CAS  PubMed  Google Scholar 

  • Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • De La Serre CB, Ellis CL, Lee J, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299:G440–8.

    Article  CAS  Google Scholar 

  • Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013;59:617–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert JK, Kim YJ, Kim JI, et al. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity. 2013;39:647–60.

    Article  CAS  PubMed  Google Scholar 

  • Fugmann M, Breier M, Rottenkolber M, et al. The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci Rep. 2015;5:13212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavaldà-Navarro A, Moreno-Navarrete JM, Quesada-López T, et al. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia. 2016;59:2208–18.

    Article  PubMed  CAS  Google Scholar 

  • Goffredo M, Mass K, Parks EJ, et al. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J Clin Endocrinol Metab. 2016;101:4367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallam MC, Barile D, Meyrand M, et al. Maternal high-protein or high prebiotic fiber diets affect maternal milk composition and gut microbiota in rat dams and their offspring. Obesity. 2014;22:2344–51.

    Article  CAS  PubMed  Google Scholar 

  • Hanatani S, Motoshima H, Takaki Y, et al. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-ay mice. J Clin Biochem Nutr. 2016;59:207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haro C, Montes-Borrego M, Rangel-Zúñiga OA, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab. 2016;101:233–42.

    Article  CAS  PubMed  Google Scholar 

  • Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev. 2006;27:750–61.

    Article  PubMed  Google Scholar 

  • Hu J, Kyrou I, Tan BK, et al. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology. 2016;157:1881–94.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Forum Nutr. 2013;5:234–52.

    CAS  Google Scholar 

  • Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  CAS  PubMed  Google Scholar 

  • Korem T, Zeevi D, Suez J, et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 2015;349:1101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korpela K, Flint HJ, Johnstone AM, et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS One. 2014;9:e90702.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhle S, Tong OS, Woolcott CG. Association between caesarean section and childhood obesity: a systematic review and meta-analysis. Obes Rev. 2015;16:295–303.

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Laiho A, Lundelin K, et al. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio. 2014;5:e02113–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lassenius MI, Pietiläinen KH, Kaartinen K, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34:1809–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim MY, Rho M, Song YM, et al. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci Rep. 2014;4:7348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Lu L, Yao P, et al. Lipopolysaccharide binding protein, obesity status and incidence of metabolic syndrome: a prospective study among middle-aged and older Chinese. Diabetologia. 2014;57:1834–41.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Fan C, Li P, et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin R, Nauta AJ, Ben Amor K, et al. Early life: gut microbiota and immune development in infancy. Benefic Microbes. 2010;1:367–82.

    Article  CAS  Google Scholar 

  • Martinez KB, Leone V, Chang EB. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes. 2017;6:1–13.

    Google Scholar 

  • Maurer AD, Eller LK, Hallam MC, et al. Consumption of diets high in prebiotic fiber or protein during growth influences the response to a high fat and sucrose diet in adulthood in rats. Nutr Metab. 2010;7:77.

    Article  CAS  Google Scholar 

  • Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489:231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Navarrete JM, Fernández-Real JM. The possible role of antimicrobial proteins in obesity-associated immunologic alterations. Expert Rev Clin Immunol. 2014;10:855–66.

    Article  CAS  PubMed  Google Scholar 

  • van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium Difficile. N Engl J Med. 2013;368:407–15.

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan O, Cronin O, Clarke SF, et al. Exercise and the microbiota. Gut Microbes. 2015;6:131–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parks BW, Nam E, Org E, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17:141–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  CAS  PubMed  Google Scholar 

  • Petriz BA, Castro AP, Almeida JA, et al. Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 2014;15:511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Ravussin Y, Koren O, Spor A, et al. Response of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring). 2012;20:736–47.

    Article  CAS  Google Scholar 

  • Reijnders D, Goossens GH, Hermes GD, et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 2016;24:63–74.

    Article  CAS  PubMed  Google Scholar 

  • Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26:493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saari A, Virta LJ, Sankilampi U, et al. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135:617–26.

    Article  PubMed  Google Scholar 

  • Saha DC, Reimer RA. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression. Nutr Res. 2014;34:789–96.

    Article  CAS  PubMed  Google Scholar 

  • Sahuri-Arisoylu M, Brody LP, Parkinson JR, et al. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int J Obes. 2016;40:955–63.

    Article  CAS  Google Scholar 

  • Salminen S, Gibson GR, McCartney AL, et al. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut. 2004;53:1388–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–53.

    Article  CAS  PubMed  Google Scholar 

  • Shirouchi B, Nagao K, Umegatani M, et al. Probiotic Lactobacillus gasseri SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure. Br J Nutr. 2016;16:451–8.

    Article  CAS  Google Scholar 

  • Simoes CD, Maukonen J, Kaprio J, et al. Habitual dietary intake is associated with the stool microbiota composition of Finnish monozygotic twins. J Nutr. 2013;143:417–23.

    Article  CAS  PubMed  Google Scholar 

  • Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;10:CD007482.

    Google Scholar 

  • Sommer F, Ståhlman M, Ilkayeva O, et al. The gut microbiota modulates energy metabolism in the hibernating brown bear ursus arctos. Cell Rep. 2016;14:1655–61.

    Article  CAS  PubMed  Google Scholar 

  • Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio. 2016;7:4.

    Article  Google Scholar 

  • Taylor JH, Gordon WS. Growth-promoting activity for pigs of inactivated penicillin. Nature. 1955;176:312–3.

    Article  CAS  PubMed  Google Scholar 

  • Tilves CM, Zmuda JM, Kuipers AL, et al. Association of lipopolysaccharide-binding protein with aging-related adiposity change and prediabetes among African ancestry men. Diabetes Care. 2016;39:385–91.

    Article  CAS  PubMed  Google Scholar 

  • Trasande L, Blustein J, Liu M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37:16–23.

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  CAS  PubMed  Google Scholar 

  • Turta O, Rautava S. Antibiotics, obesity and the link to microbes – what are we doing to our children? BMC Med. 2016;14:57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyakht AV, Kostryukova ES, Popenko AS, et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013;4:2469.

    Article  PubMed  CAS  Google Scholar 

  • Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B streptococcal disease–revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59:1–32.

    PubMed  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Fei N, Pang X, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol. 2014;87:357–67.

    Article  CAS  PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeissig S, Blumberg RS. Life at the beginning: perturbation of themicrobiota by antibiotics in early life and its role in health and disease. Nat Immunol. 2014;15:307–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–41.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Guo Z, Lim AA, et al. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci Rep. 2014;4:5001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer JA, Lange B, Frick JS, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66:53–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Xifra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xifra, G., Moreno-Navarrete, J.M., Fernández-Real, J.M. (2019). The Microbiota and Energy Balance. In: Sbraccia, P., Finer, N. (eds) Obesity. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-46933-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46933-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46932-4

  • Online ISBN: 978-3-319-46933-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics