Skip to main content

Part of the book series: Endocrinology ((ENDOCR))

  • 3300 Accesses

Abstract

Monogenic forms of diabetes can be associated with diabetes diagnosed in neonatal life or in young adulthood.

The commonest presentation of monogenic diabetes is maturity-onset diabetes of the young (MODY), which typically presents in young adult life with familial, non-autoimmune diabetes without insulin resistance. HNF1A and GCK mutations account for most cases.

Mitochondrial diabetes presents at a similar age with diabetes associated with deafness, myopathy, and neurological features.

In the first 6 months of life, diabetes is nearly always caused by single gene mutations. Neonatal diabetes is highly heterogeneous, but the commonest causes are mutations in KCNJ11 and ABCC8 encoding the beta-cell KATP channel components and methylation defects in the chromosome 6q24 region.

The most important reason for diagnosing monogenic diabetes is that the genetic aetiology alters treatment. Mutations in HNF1A, HNF4A, ABCC8, and KCNJ11 all lead to diabetes responsive to sulfonylurea therapy, while GCK-MODY does not require treatment.

When diabetes arises as part of a multisystem disorder such as in Wolcott-Rallison syndrome or HNF1B-MODY, the genetic diagnosis may give important insight into prognosis and development of other features.

New sequencing technologies such as exome sequencing can be used to search for new genes which cause diabetes, but interpreting novel genetic variants in both familiar and less well-known genes remains extremely challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • American Diabetes, Association. 2. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Suppl 1):S11–24.

    Article  Google Scholar 

  • Ashcroft FM, Puljung MC, Vedovato N. Neonatal diabetes and the KATP Channel: from mutation to therapy. Trends Endocrinol Metab. 2017;28(5):377–87.

    Article  CAS  Google Scholar 

  • Babiker T, et al. Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia. 2016;59(6):1162–6.

    Article  CAS  Google Scholar 

  • Bacon S, et al. Successful maintenance on sulfonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort. Diabet Med. 2015;33:976.

    Article  Google Scholar 

  • Battaglia D, et al. Glyburide ameliorates motor coordination and glucose homeostasis in a child with diabetes associated with the KCNJ11/S225T, del226-232 mutation. Pediatr Diabetes. 2012;13(8):656–60.

    Article  Google Scholar 

  • Bellanne-Chantelot C, et al. Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med. 2004;140(7):510–7.

    Article  CAS  Google Scholar 

  • Bellanne-Chantelot C, et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54(11):3126–32.

    Article  CAS  Google Scholar 

  • Bellanne-Chantelot C, et al. Clinical characteristics and diagnostic criteria of maturity-onset diabetes of the young (MODY) due to molecular anomalies of the HNF1A gene. J Clin Endocrinol Metab. 2011;96(8):E1346–51.

    Article  CAS  Google Scholar 

  • Bellanne-Chantelot C, et al. High-sensitivity C-reactive protein does not improve the differential diagnosis of HNF1A-MODY and familial young-onset type 2 diabetes: a grey zone analysis. Diabetes Metab. 2016;42(1):33–7.

    Article  CAS  Google Scholar 

  • Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1.

    Article  CAS  Google Scholar 

  • Boesgaard TW, et al. Further evidence that mutations in INS can be a rare cause of maturity-onset diabetes of the young (MODY). BMC Med Genet. 2010;11:42.

    Article  Google Scholar 

  • Bonnycastle LL, et al. Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes. 2013;62(11):3943–50.

    Article  CAS  Google Scholar 

  • Clissold RL, et al. Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. Kidney Int. 2016;90(1):203–11.

    Article  CAS  Google Scholar 

  • De Franco E, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet. 2015;386(9997):957–63.

    Article  Google Scholar 

  • Edghill EL, et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes. 2008;57(4):1034–42.

    Article  CAS  Google Scholar 

  • Eide SA, et al. Prevalence of HNF1A (MODY3) mutations in a Norwegian population (the HUNT2 study). Diabet Med. 2008;25(7):775–81.

    Article  CAS  Google Scholar 

  • Ellard S, et al. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia. 2008;51(4):546–53.

    Article  CAS  Google Scholar 

  • Ellard S, et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia. 2013;56(9):1958–63.

    Article  CAS  Google Scholar 

  • Estalella I, et al. Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain. Clin Endocrinol. 2007;67(4):538–46.

    CAS  Google Scholar 

  • Flanagan S, De Franco E. Monogenic causes of pancreatic agenesis. 2015; Diapedia 4105491820 rev. no. 2. Available from https://doi.org/10.14496/dia.4105491820.2.

    Google Scholar 

  • Flanagan SE, et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes. 2007;56(7):1930–7.

    Article  CAS  Google Scholar 

  • Flanagan SE, et al. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab. 2014;19(1):146–54.

    Article  CAS  Google Scholar 

  • Flannick J, et al. Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat Genet. 2013;45(11):1380–5.

    Article  CAS  Google Scholar 

  • Froguel P, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 1992;356:162–4.

    Article  CAS  Google Scholar 

  • Garin I, et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci U S A. 2010;107(7):3105–10.

    Article  CAS  Google Scholar 

  • Gloyn AL, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med. 2004;350(18):1838–49.

    Article  CAS  Google Scholar 

  • Hattersley AT, et al. Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet. 1998;19:268–70.

    Article  CAS  Google Scholar 

  • Iafusco D, et al. Permanent diabetes mellitus in the first year of life. Diabetologia. 2002;45(6):798–804.

    Article  CAS  Google Scholar 

  • Iafusco D, et al. Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol. 2012;49(5):405–8.

    Article  CAS  Google Scholar 

  • Izumi T, et al. Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes. 2003;52(2):409–16.

    Article  CAS  Google Scholar 

  • Johansson S, et al. Exome sequencing and genetic testing for MODY. PLoS One. 2012;7(5):e38050.

    Article  CAS  Google Scholar 

  • Johansson BB, et al. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia. 2017;60(4):625–35.

    Article  CAS  Google Scholar 

  • Johnson MB, et al. Recessively inherited LRBA mutations cause autoimmunity presenting as neonatal diabetes. Diabetes. 2017;66(8):2316–22.

    Article  CAS  Google Scholar 

  • Kanthimathi S, et al. Identification and molecular characterization of HNF1B gene mutations in Indian diabetic patients with renal abnormalities. Ann Hum Genet. 2015;79(1):10–9.

    Article  CAS  Google Scholar 

  • Kavvoura F, et al. Reclassification of diabetes etiology in a family with multiple diabetes phenotypes. J Clin Endocrinol Metab. 2014;99:E1067. https://doi.org/10.1210/jc2013-3641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kropff J, et al. Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire, UK. Diabetologia. 2011;54(5):1261–3.

    Article  CAS  Google Scholar 

  • Laver TW, et al. The common p.R114W HNF4A mutation causes a distinct clinical subtype of monogenic diabetes. Diabetes. 2016;65(10):3212–7.

    Article  CAS  Google Scholar 

  • Ledermann HM. Maturity-onset diabetes of the young (MODY) at least ten times more common in Europe than previously assumed? Diabetologia. 1995;38(12):1482.

    Article  CAS  Google Scholar 

  • Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.

    Article  CAS  Google Scholar 

  • Lorini R, et al. Maturity-onset diabetes of the young in children with incidental hyperglycemia: a multicenter Italian study of 172 families. Diabetes Care. 2009;32(10):1864–6.

    Article  CAS  Google Scholar 

  • MacArthur DG, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469–76.

    Article  CAS  Google Scholar 

  • McDonald TJ, et al. High-sensitivity CRP discriminates HNF1A-MODY from other subtypes of diabetes. Diabetes Care. 2011;34(8):1860–2.

    Article  Google Scholar 

  • Molven A, et al. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes. 2008;57(4):1131–5.

    Article  CAS  Google Scholar 

  • Moritani M, et al. Identification of monogenic gene mutations in Japanese subjects diagnosed with type 1B diabetes between >5 and 15.1 years of age. J Pediatr Endocrinol Metab. 2016;29(9):1047–54.

    Article  CAS  Google Scholar 

  • Murphy R, et al. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet Med. 2008;25(4):383–99.

    Article  CAS  Google Scholar 

  • Njolstad PR, et al. Permanent neonatal diabetes caused by glucokinase deficiency: inborn error of the glucose-insulin signaling pathway. Diabetes. 2003;52(11):2854–60.

    Article  CAS  Google Scholar 

  • Owen KR, et al. Assessment of high-sensitivity C-reactive protein levels as diagnostic discriminator of maturity-onset diabetes of the young due to HNF1A mutations. Diabetes Care. 2010;33(9):1919–24.

    Article  CAS  Google Scholar 

  • Panzram G, Adolph W. Heterogeneity of maturity onset diabetes at young age (MODY). Lancet. 1981;2(8253):986.

    Article  CAS  Google Scholar 

  • Patch AM, et al. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes Metab. 2007;9(Suppl 2):28–39.

    Article  CAS  Google Scholar 

  • Patel K, Laakso M, Stancakova A, Laver TW, Colclough K, Johnson MB, Kettunen J, Tuomi T, Cnop M, Shepherd MH, Flanagan SE, Ellard S, Hattersley AT, Weedon MN. Heterozygous RFX6 protein truncating variants cause Maturity-Onset Diabetes of the Young (MODY) with reduced penetrance. Nat Commun. 2017;8:888. BioRxiv beta.

    Article  Google Scholar 

  • Pearson ER, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275–81.

    Article  CAS  Google Scholar 

  • Pearson ER, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467–77.

    Article  CAS  Google Scholar 

  • Pearson ER, et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007;4(4):e118.

    Article  Google Scholar 

  • Pihoker C, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for diabetes in youth. J Clin Endocrinol Metab. 2013;98(10):4055–62.

    Article  CAS  Google Scholar 

  • Prudente S, et al. Loss-of-function mutations in APPL1 in familial diabetes mellitus. Am J Hum Genet. 2015;97(1):177–85.

    Article  CAS  Google Scholar 

  • Raeder H, et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet. 2006;38(1):54–62.

    Article  CAS  Google Scholar 

  • Raile K, et al. Expanded clinical spectrum in hepatocyte nuclear factor 1b-maturity-onset diabetes of the young. J Clin Endocrinol Metab. 2009;94(7):2658–64.

    Article  CAS  Google Scholar 

  • Rasmussen M, et al. 17q12 deletion and duplication syndrome in Denmark-a clinical cohort of 38 patients and review of the literature. Am J Med Genet A. 2016;170(11):2934–42.

    Article  CAS  Google Scholar 

  • Rubio-Cabezas O, et al. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 2010;59(9):2326–31.

    Article  Google Scholar 

  • Rubio-Cabezas O, et al. ISPAD clinical practice consensus guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2014;15(Suppl 20):47–64.

    Article  CAS  Google Scholar 

  • Senee V, et al. Wolcott-Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity. Diabetes. 2004;53(7):1876–83.

    Article  CAS  Google Scholar 

  • Shepherd M, et al. A genetic diagnosis of HNF1A diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med. 2009;26(4):437–41.

    Article  CAS  Google Scholar 

  • Shields BM, et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8.

    Article  CAS  Google Scholar 

  • Shields BM, et al. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia. 2012;55(5):1265–72.

    Article  CAS  Google Scholar 

  • Shields BM, et al. Population-based assessment of a biomarker-based screening pathway to aid diagnosis of monogenic diabetes in young-onset patients. Diabetes Care. 2017;40(8):1017–25.

    Article  Google Scholar 

  • Smith SB, et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature. 2010;463(7282):775–80.

    Article  CAS  Google Scholar 

  • Spyer G, et al. Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation. Diabet Med. 2009;26(1):14–8.

    Article  CAS  Google Scholar 

  • Steele AM, et al. Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: observational case control studies. PLoS One. 2013;8(6):e65326.

    Article  CAS  Google Scholar 

  • Steele AM, et al. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311(3):279–86.

    Article  CAS  Google Scholar 

  • Stoffers DA, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997;15:106–10.

    Article  CAS  Google Scholar 

  • Stoy J, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040–4.

    Article  Google Scholar 

  • Stride A, et al. Glycosuria at 2 h post OGTT: a screening tool for unaffected subjects in families with HNF-1a mutations. Diabet Med. 2002;19(S2):59–60.

    Google Scholar 

  • Stride A, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia. 2014;57(1):54–6.

    Article  CAS  Google Scholar 

  • Szopa M, et al. A family with the Arg103Pro mutation in the NEUROD1 gene detected by next-generation sequencing – clinical characteristics of mutation carriers. Eur J Med Genet. 2016;59(2):75–9.

    Article  Google Scholar 

  • Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med. 1974;43:339–57.

    CAS  PubMed  Google Scholar 

  • Temple IK, Shield JP. Transient neonatal diabetes, a disorder of imprinting. J Med Genet. 2002;39(12):872–5.

    Article  CAS  Google Scholar 

  • Thanabalasingham G, et al. A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes. Diabetologia. 2011;54(11):2801–10.

    Article  CAS  Google Scholar 

  • Thanabalasingham G, et al. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care. 2012;35(6):1206–12.

    Article  CAS  Google Scholar 

  • Thanabalasingham G, et al. Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes. 2013;62(4):1329–37.

    Article  CAS  Google Scholar 

  • Transferring Patients with Diabetes due to a KIR6.2 Mutation from Insulin to Sulphonylureas. 2017. Available from: http://www.diabetesgenes.org/content/transferring-patients-diabetes-due-kir62-mutation-insulin-sulphonylureas.

  • Tuomi T, et al. Improved prandial glucose control with lower risk of hypoglycemia with nateglinide than with glibenclamide in patients with maturity-onset diabetes of the young type 3. Diabetes Care. 2006;29(2):189–94.

    Article  CAS  Google Scholar 

  • van den Ouweland JM, et al. Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA(Leu(UUR)) gene. Diabetes. 1994;43(6):746–51.

    Article  Google Scholar 

  • Walsh R, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203.

    Article  Google Scholar 

  • Yamagata K, et al. Mutations in the hepatic nuclear factor 1 alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996a;384:455–8.

    Article  CAS  Google Scholar 

  • Yamagata K, et al. Mutations in the hepatocyte nuclear factor 4 alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 1996b;384:458–60.

    Article  CAS  Google Scholar 

  • (2017) 2. Classification and Diagnosis of Diabetes:. Diabetes Care 41 (Supplement 1):S13–S27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine R. Owen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Owen, K.R. (2018). Monogenic Diabetes. In: Bonora, E., DeFronzo, R. (eds) Diabetes Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment . Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-45015-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45015-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45014-8

  • Online ISBN: 978-3-319-45015-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics