Skip to main content

Pathogenesis of Thyroid Carcinoma

  • Reference work entry
  • First Online:
Thyroid Diseases

Part of the book series: Endocrinology ((ENDOCR))

  • 1847 Accesses

Abstract

This chapter summarizes our current knowledge about molecular lesions driving the most common subtypes of thyroid carcinoma. Genetic lesions in the RET receptor tyrosine kinase and in RAS family GTPases are present in a large proportion of sporadic medullary thyroid carcinomas (MTC). RAS mutations are also common in well-differentiated thyroid carcinomas of the papillary (PTC) and follicular (FTC) type. Genetic lesions, most commonly the V600E point mutation, in the BRAF serine/threonine kinase are common in PTC; the PAX8-PPARG gene fusion is present in FTC. Finally, aggressive thyroid cancer types are enriched in several additional mutations including those targeting the TP53 tumor suppressor and the TERT (telomerase-reverse transcriptase) gene promoter. This knowledge is being translated into novel diagnostic and prognostic markers as well as molecular targets for novel therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4E-BP1:

4E-binding protein 1

AKT:

AKR mice tyhymoma oncogene

ALK:

Anaplastic lymphoma kinase

APC:

Adenomatous polyposis coli

ARID:

AT-rich interaction domain

ART:

Artemin

ATC:

Anaplastic thyroid carcinoma

ATRX:

ATP-dependent helicase X

BRAF:

B-type rapidly accelerated fibrosarcoma oncogene

CCDC6:

Coiled coil domain containing protein 6

CEA:

Carcinoembryonic antigen

CLA:

Cutaneous lichen amyloidosis

CLD:

Cadherin like domain

CRD:

Cysteine rich domain

CREBBP:

Cyclic AMP responsive element binding binding protein

CTNNB1:

Catenin beta 1

CV-PTC:

Classical variant-papillary thyroid carcinoma

DDR:

DNA damage response

DICER1:

Dicer 1 ribonuclease III

DTC:

Differentiated thyroid carcinoma

EIF1AX:

Eukaryotic translation initiation factor 1A, X-linked

ERK:

Extracellular regulated kinase

ETS:

E-twenty six

FAP:

Familial adenomatous polyposis of colon

FNMTC:

Familial non medullary thyroid carcinoma

FOXE1:

Forkhead box E1

FTA:

Follicular thyroid adenoma

FTC:

Follicular thyroid carcinoma

FTEN:

Familial thyroid epithelial neoplasia

FV-PTC:

Follicular variant-papillary thyroid carcinoma

GABP:

GA binding protein

GAP:

GTPase activating protein

GDNF:

Glial cell-derived neurotrophic factor

GEF:

Guanine nucleotide exchange factor

GTP:

Guanosine triphosphate

HCC:

Hürthle cell carcinoma

HD:

Hirschsprung's disease

Indels:

Insertion/deletions

KD:

Kinase domain

KMT2A/C/D:

Lysine methyltransferase 2 A/C/D

MAPK:

Mitogen-activated protein kinase

MEN:

Multiple endocrine neoplasia syndrome

MLH1:

Mut L homolog 1

MLH3:

Mut L homolog 3

MMR:

Mismatch repair

MNG1:

Multinodular goiter 1

MSH2:

Mut S homolog 2

MSH6:

Mut S homolog 6

MTC:

Medullary thyroid carcinoma

mTOR:

mammalian target of rapamycin

mTORC:

mammalian target of rapamycin complex

NCOA4:

Nuclear coactivator 4

NF1:

Neurofibromatosis 1

NF2:

Neurofibromatosis 2

NIFTP:

Non invasive follicular thyroid neoplasm with papillary like nuclear features

NKX2-1:

NK2 homeobox 1

NMTC:

Non-medullary thyroid carcinoma

NMTC1:

Non-medullary thyroid carcinoma 1

NRT:

Neurturin

NTRK:

Neurotrophic tyrosine kinase

PAX8:

Paired box gene 8

PBMR1:

Polybromo-1, BRG1-associated factor

PDK1:

Phosphoinositide-dependent kinase 1

PDTC:

Poorly differentiated thyroid carcinoma

PI3K:

Phosphatidylinositol 3 kinase

PI3KCA:

Phosphatidylinositol 3 kinase catalytic subunit

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PKB:

Protein kinase B

PPARG:

Peroxisome proliferator-activated receptor gamma

PPFP:

PAX8-PPARG fusion protein

PSP:

Persephin

PTC:

Papillary thyroid carcinoma

PTEN:

Phosphatase and tensin homolog

RAS:

Rat sarcoma oncogene

RBD:

Ras binding domain

RET:

Rearranged during transfection

RSK:

Ribosomal protein S6 kinase

RTK:

Receptor tyrosine kinase

SBS:

Single base substitution

SETD2:

SET domain containing 2 protein

SMARCB1:

SWI/SNF related matrix associated actin dependent regulator of chromatin B1

SOS:

Son of sevenless

SWI/SNF:

SwItch/sucrose non-fermentable

TC:

Thyroid carcinoma

TCGA:

The cancer genome atlas

TCO:

Thyroid tumors with cell oxyphilia

TCV-PTC:

Tall cell variant-papillary thyroid carcinoma

TERT:

Telomerase reverse transcriptase

THADA:

Thyroid adenoma associated protein

TP53:

Tumor protein p53

TSC2:

Tuberous sclerosis 2

TSH:

Thyroid stimulating hormone

WNT:

Wingless-related integration site

YAP:

Yes-associated protein

References

  • Afkhami M, Karunamurthy A, Chiosea S, Nikiforova MN, Seethala R, Nikiforov YE, et al. Histopathologic and clinical characterization of thyroid tumors carrying the BRAF(K601E) mutation. Thyroid. 2016;26(2):242–7.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98(2):E364–9.

    Article  CAS  PubMed  Google Scholar 

  • Akıncılar S, Khattar E, Boon PL, Unal B, Fullwood MJ, Tergaonkar V. Long-range chromatin interactions drive mutant tert promoter activation. Cancer Discov. 2016;6(11):1276–91.

    Article  PubMed  Google Scholar 

  • Armstrong MJ, Yang H, Yip L, Ohori NP, McCoy KL, Stang MT, et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014;24(9):1369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asa SL, Giordano TJ, LiVolsi VA. Implications of the TCGA genomic characterization of papillary thyroid carcinoma for thyroid pathology: does follicular variant papillary thyroid carcinoma exist? Thyroid. 2015;25(1):1–2.

    Article  PubMed  Google Scholar 

  • Boichard A, Croux L, Al Ghuzlan A, Broutin S, Dupuy C, Leboulleux S, et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab. 2012;97(10):E2031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonora E, Tallini G, Romeo G. Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-art studies. J Oncol. 2010;2010:385206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016 Dec 3;388(10061):2783–2795.

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  • Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciampi R, Mian C, Fugazzola L, Cosci B, Romei C, Barollo S, et al. Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid. 2013;23(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.

    Article  CAS  PubMed  Google Scholar 

  • Dillon LW, Pierce LC, Lehman CE, Nikiforov YE, Wang YH. DNA topoisomerases participate in fragility of the oncogene RET. PLoS One. 2013;8(9):e75741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dralle H, Machens A, Basa J, Fatourechi V, Franceschi S, Hay ID, et al. Follicular cell-derived thyroid cancer. Nat Rev Dis Primers. 2015;1:15077.

    Article  PubMed  Google Scholar 

  • Drieschner N, Kerschling S, Soller JT, Rippe V, Belge G, Bullerdiek J, Nimzyk R. A domain of the thyroid adenoma associated gene (THADA) conserved in vertebrates becomes destroyed by chromosomal rearrangements observed in thyroid adenomas. Gene. 2007;403(1–2):110–7.

    Article  CAS  PubMed  Google Scholar 

  • Dunn L, Fagin JA. Therapy: lenvatinib and radioiodine-refractory thyroid cancers. Nat Rev Endocrinol. 2015;11(6):325–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duntas LH, Doumas C. The ‘rings of fire’ and thyroid cancer. Hormones (Athens). 2009;8(4):249–53.

    Article  Google Scholar 

  • Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  • Elisei R, Romei C, Cosci B, Agate L, Bottici V, Molinaro E, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92(12):4725–9.

    Article  CAS  PubMed  Google Scholar 

  • Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91(1):179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagin JA, Wells Jr SA. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank-Raue K, Rybicki LA, Erlic Z, Schweizer H, Winter A, Milos I, et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum Mutat. 2011;32(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi M, Evdokimova V, Nikiforov YE. Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma. Mol Cell Endocrinol. 2010;321(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  • Ganly I, Ricarte Filho J, Eng S, Ghossein R, Morris LG, Liang Y, et al. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J Clin Endocrinol Metab. 2013;98(5):E962–72.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rendueles ME, Ricarte-Filho JC, Untch BR, Landa I, Knauf JA, Voza F, et al. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition. Cancer Discov. 2015;5(11):1178–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rostan G, Tallini G, Herrero A, D’Aquila TG, Carcangiu ML, Rimm DL. Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res. 1999;59(8):1811–5.

    PubMed  CAS  Google Scholar 

  • Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A. 2007;104(21):9001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano TJ. Follicular cell thyroid neoplasia: insights from genomics and the cancer genome atlas research network. Curr Opin Oncol. 2016;28(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  • Grubbs EG, Ng PK, Bui J, Busaidy NL, Chen K, Lee JE, et al. RET fusion as a novel driver of medullary thyroid carcinoma. J Clin Endocrinol Metab. 2015;100(3):788–93.

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet. 2009;41(4):460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haraldsdottir S, Shah MH. New era for treatment in differentiated thyroid cancer. Lancet. 2014;384(9940):286–8.

    Article  PubMed  Google Scholar 

  • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.

    Article  CAS  PubMed  Google Scholar 

  • Hodak S, Tuttle RM, Maytal G, Nikiforov YE, Randolph G. Changing the cancer diagnosis: the case of follicular variant of papillary thyroid cancer-primum non nocere and NIFTP. Thyroid. 2016;26(7):869–71.

    Article  PubMed  Google Scholar 

  • Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2013. Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site. 2016.

  • Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ito T, Seyama T, Iwamoto KS, Hayashi T, Mizuno T, Tsuyama N, et al. In vitro irradiation is able to cause RET oncogene rearrangement. Cancer Res. 1993;53(13):2940–3.

    PubMed  CAS  Google Scholar 

  • Ji JH, Oh YL, Hong M, Yun JW, Lee HW, Kim D, et al. Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 2015;11(8):e1005467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson E, Andersson L, Örnros J, Carlsson T, Ingeson-Carlsson C, Liang S, et al. Revising the embryonic origin of thyroid C cells in mice and humans. Development. 2015;142(20):3519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasaian K, Wiseman SM, Walker BA, Schein JE, Hirst M, Moore RA, et al. Putative BRAF activating fusion in a medullary thyroid cancer. Cold Spring Harb Mol Case Stud. 2016;2(2):a000729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan A, Nair SA, Pillai MR. Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr Mol Med. 2007;7(6):532–40.

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Lechel A, Güneş Ç. Telomerase: the devil inside. Genes (Basel). 2016;7(8).

    Article  CAS  PubMed Central  Google Scholar 

  • Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98(9):E1562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebner DA, Shah MH. Thyroid cancer: pathogenesis and targeted therapy. Ther Adv Endocrinol Metab. 2011;2(5):173–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Yuan X, Xu D. Cancer-Specific Telomerase Reverse Transcriptase (TERT) Promoter Mutations: Biological and Clinical Implications. Genes (Basel). 2016a Jul 18;7(7). pii: E38.

    Article  CAS  PubMed Central  Google Scholar 

  • Liu T, Yuan X, Xu D. Cancer-specific telomerase reverse transcriptase (TERT) promoter mutations: biological and clinical implications. Genes (Basel). 2016b;7(7):38.

    Article  CAS  Google Scholar 

  • Machens A, Niccoli-Sire P, Hoegel J, Frank-Raue K, van Vroonhoven TJ, Roeher HD, et al. Early malignant progression of hereditary medullary thyroid cancer. N Engl J Med. 2003;349(16):1517–25.

    Article  CAS  PubMed  Google Scholar 

  • Maenhaut C, Christophe D, Vassart G, Dumont J, Roger PP, Opitz R. Ontogeny, Anatomy, Metabolism and Physiology of the Thyroid. [Updated 2015 Jul 15]. In: De Groot LJ, Chrousos G, Dungan K, et al., Editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK285554/

  • Malandrino P, Russo M, Ronchi A, Minoia C, Cataldo D, Regalbuto C, et al. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination. Endocrine. 2016;53(2):471–9.

    Article  CAS  PubMed  Google Scholar 

  • Máximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br J Cancer. 2005;92(10):1892–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazeh H, Sippel RS. Familial nonmedullary thyroid carcinoma. Thyroid. 2013;23(9):1049–56.

    Article  PubMed  Google Scholar 

  • Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma. Thyroid. 1999;9(5):421–7.

    Article  CAS  PubMed  Google Scholar 

  • Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz A, Li Y, Guo A, Villén J, Wang Y, MacNeill J, et al. Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal. 2010;3(136):ra64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura MM, Cavaco BM, Pinto AE, Leite V. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab. 2011;96(5):E863–8.

    Article  CAS  PubMed  Google Scholar 

  • Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14(3):173–86.

    Article  CAS  PubMed  Google Scholar 

  • Navas-Carrillo D, Ríos A, Rodríguez JM, Parrilla P, Orenes-Piñero E. Familial nonmedullary thyroid cancer: screening, clinical, molecular and genetic findings. Biochim Biophys Acta. 2014;1846(2):468–76.

    PubMed  CAS  Google Scholar 

  • Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn 2nd GW, Tallini G, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88(5):2318–26.

    Article  CAS  PubMed  Google Scholar 

  • Papp S, Asa SL. When thyroid carcinoma goes bad: a morphological and molecular analysis. Head Neck Pathol. 2015;9(1):16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci U S A. 2000;97(24):13144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radkay LA, Chiosea SI, Seethala RR, Hodak SP, LeBeau SO, Yip L, et al. Thyroid nodules with KRAS mutations are different from nodules with NRAS and HRAS mutations with regard to cytopathologic and histopathologic outcome characteristics. Cancer Cytopathol. 2014;122(12):873–82.

    Article  CAS  PubMed  Google Scholar 

  • Raman P, Koenig RJ. Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol. 2014;10(10):616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F, Knauf JA, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013;123(11):4935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rio Frio T, Bahubeshi A, Kanellopoulou C, Hamel N, Niedziela M, Sabbaghian N, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli-Leydig cell tumors. JAMA. 2011;305(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  • Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.

    Article  CAS  PubMed  Google Scholar 

  • Santoro M, Carlomagno F. Targeting the Raf-MEK-ERK mit. Cold Spring Harb Perspect Biol. 2013;5(12):a009233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7(4):295–308.

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  • Smallridge RC, Copland JA. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (R Coll Radiol). 2010;22(6):486–97. doi:10.1016/j.clon.2010.03.013.

    Article  CAS  Google Scholar 

  • Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 2009;16(1):17–44.

    Article  CAS  PubMed  Google Scholar 

  • Tuttle RM, Haddad RI, Ball DW, Byrd D, Dickson P, Duh QY, et al. Thyroid carcinoma, version 2.2014. J Natl Compr Canc Netw. 2014;12(12):1671–80.

    Article  PubMed  Google Scholar 

  • Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.

    Article  CAS  PubMed  Google Scholar 

  • Volante M, Collini P, Nikiforov YE, Sakamoto A, Kakudo K, Katoh R, et al. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 2007;31(8):1256–64.

    Article  PubMed  Google Scholar 

  • Wells Jr SA, Pacini F, Robinson BG, Santoro M. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J Clin Endocrinol Metab. 2013;98(8):3149–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells Jr SA, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. American thyroid association guidelines task force on medullary thyroid carcinoma. revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams D. Radiation carcinogenesis: lessons from Chernobyl. Oncogene. 2008;27(Suppl 2):S9–18.

    Article  CAS  PubMed  Google Scholar 

  • Williams D. Thyroid growth and cancer. Eur Thyroid J. 2015;4(3):164–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing M, Haugen BR, Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet. 2013;381(9871):1058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33(1):42–50.

    Article  PubMed  Google Scholar 

  • Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB, Galetti V. Iodine intake as a risk factor for thyroid cancer: a comprehensive review of animal and human studies. Thyroid Res. 2015;8:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Santoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Santoro, M., Carlomagno, F. (2018). Pathogenesis of Thyroid Carcinoma. In: Vitti, P., Hegedüs, L. (eds) Thyroid Diseases. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-45013-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45013-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45012-4

  • Online ISBN: 978-3-319-45013-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics