Skip to main content

Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes

  • Reference work entry
  • First Online:

Abstract

Superior energy and power density, low toxicity, and enhanced shelf life have contributed to the popularity of lithium ion batteries as energy storage devices in the electronics and automobile industries. However, next-generation lithium ion batteries will require even higher energy densities to meet ever-increasing demands for longer battery life. Owing to its extremely high theoretical specific capacity (approximately ten times larger than that of conventional anode materials) and low electrochemical reduction potential (−3.04 V with respect to H/H+ reference electrode), lithium metal is a highly attractive candidate as an anode material for next-generation lithium ion batteries. However, challenges such as dendrite growth, which can lead to short circuits or capacity loss from electrical isolation of growths, have prevented widespread commercial use of lithium metal electrodes. Successful commercialization will require stabilization of lithium deposition. Devising strategies to achieve this goal will require an understanding of the fundamental mechanisms that govern electrochemical deposition and dendrite propagation and which span multiple length scales. Building on experimental observations, several mathematical models have been developed to evaluate the roles of a variety of physical phenomena (such as electrochemical reaction, diffusion, migration, mechanical stress and strain, and surface tension) in lithium deposition processes. The present chapter provides an overview of these approaches for modeling lithium deposition and dendrite growth, summarizes their findings, and discusses remaining questions and future directions for dendrite modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya N (2016) Phase field modeling of electrodeposition process in lithium metal batteries. Master of Science, Missouri University of Science and Technology

    Google Scholar 

  • Ahmad Z, Viswanathan V (2017) Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys Rev Lett 119(5):056003

    Google Scholar 

  • Ahmed Z, Viswanathan V (2017) Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. Phys Rev Mater 1:055403

    Article  Google Scholar 

  • Aryanfar A, Brooks D, Merinov BV, Goddard WA, Colussi AJ, Hoffmann MR (2014) Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations. J Phys Chem Lett 5(10):1721–1726

    Article  Google Scholar 

  • Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89(2):206–218

    Article  Google Scholar 

  • Bai P, Li J, Brushett FR, Bazant MZ (2016) Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci 9(10):3221–3229

    Article  Google Scholar 

  • Barai P, Higa K, Srinivasan V (2017a) Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study. J Electrochem Soc 164(2):A180–A189

    Article  Google Scholar 

  • Barai P, Higa K, Srinivasan V (2017b) Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys 19(31):20493–20505

    Article  Google Scholar 

  • Barton JL, Bockris JOM (1962) The electrolytic growth of dendrites from ionic solutions. Proc R Soc A: Math Phys Eng Sci 268(A):485–505

    ADS  Google Scholar 

  • Bazant MZ (2013) Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc Chem Res 46(5):1144–1160

    Article  Google Scholar 

  • Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025

    Article  Google Scholar 

  • Chazalviel JN (1990) Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 42(12):7355–7367

    Article  ADS  Google Scholar 

  • Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140

    Article  Google Scholar 

  • Chen L, Zhang HW, Liang LY, Liu Z, Qi Y, Lu P, Chen J, Chen LQ (2015) Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J Power Sources 300:376–385

    Article  Google Scholar 

  • Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q (2016) A review of solid electrolyte interphases on lithium metal anode. Adv Sci 3(3):1500213

    Article  Google Scholar 

  • Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

    Article  Google Scholar 

  • Cogswell DA (2015) Quantitative phase-field modeling of dendritic electrodeposition. Phys Rev E 92(1):011301

    Article  ADS  Google Scholar 

  • Diggle JW, Despic AR, Bockris JOM (1969) The mechanism of the dendritic electrocrystallization of zinc. J Enectrochem Soc 116(11):1503–1514

    Article  Google Scholar 

  • Ely DR, García RE (2013) Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J Electrochem Soc 160(4):A662–A668

    Article  Google Scholar 

  • Ely DR, Jana A, García RE (2014) Phase field kinetics of lithium electrodeposits. J Power Sources 272:581–594

    Article  Google Scholar 

  • Ferguson TR, Bazant MZ (2012) Nonequilibrium thermodynamics of porous electrodes. J Electrochem Soc 159(12):A1967–A1985

    Article  Google Scholar 

  • Ferrese A, Newman J (2014) Mechanical deformation of a lithium-metal anode due to a very stiff separator. J Electrochem Soc 161(9):A1350–A1359

    Article  Google Scholar 

  • Ferrese A, Albertus P, Christensen J, Newman J (2012) Lithium redistribution in lithium-metal batteries. J Electrochem Soc 159(10):A1615–A1623

    Article  Google Scholar 

  • Gallagher KG, Goebel S, Greszler T, Mathias M, Oelerich W, Eroglu D, Srinivasan V (2014) Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ Sci 7(5):1555–1563

    Article  Google Scholar 

  • Geng HZ, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Zhou O (2002) Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14(19):1387–1390

    Article  Google Scholar 

  • Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004a) Phase field modeling of electrochemistry. I. Equilibrium. Phys Rev E 69(2):021603

    Article  ADS  Google Scholar 

  • Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004b) Phase field modeling of electrochemistry. II. Kinetics. Phys Rev E 69(2):021604

    Google Scholar 

  • Harry KJ, Higa K, Srinivasan V, Balsara NP (2016) Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode. J Electrochem Soc 163(10):A2216–A2224

    Article  Google Scholar 

  • Inceoglu S, Rojas AA, Devaux D, Chen XC, Stone GM, Balsara NP (2014) Morphology-conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries. ACS Macro Lett 3(6):510–514

    Article  Google Scholar 

  • Jana A, García RE (2017) Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy 41:552–565

    Article  Google Scholar 

  • Jana A, Ely DR, García RE (2015) Dendrite-separator interactions in lithium-based batteries. J Power Sources 275:912–921

    Article  Google Scholar 

  • Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    Article  ADS  Google Scholar 

  • Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030

    Article  ADS  Google Scholar 

  • Kerman K, Luntz A, Viswanathan V, Chiang YM, Chen ZB (2017) Review-practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc 164(7):A1731–A1744

    Article  Google Scholar 

  • Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136(20):7395–7402

    Article  Google Scholar 

  • Li Z, Huang J, Liaw BY, Metzler V, Zhang JB (2014) A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources 254:168–182

    Article  Google Scholar 

  • Li Q, Tan S, Li LL, Lu YY, He Y (2017) Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries. Sci Adv 3(7):e1701246

    Article  ADS  Google Scholar 

  • Liang LY, Chen LQ (2014) Nonlinear phase field model for electrodeposition in electrochemical systems. Appl Phys Lett 105(26):263903

    Article  ADS  Google Scholar 

  • Liang LY, Qi Y, Xue F, Bhattacharya S, Harris SJ, Chen LQ (2012) Nonlinear phase-field model for electrode-electrolyte interface evolution. Phys Rev E 86(5):051609

    Article  ADS  Google Scholar 

  • Lin DC, Liu YY, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

    Article  ADS  Google Scholar 

  • Liu GY, Lu W (2017) A model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. J Electrochem Soc 164(9):A1826–A1833

    Article  MathSciNet  Google Scholar 

  • Lu YY, Das SK, Moganty SS, Archer LA (2012) Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv Mater 24(32):4430–4435

    Article  Google Scholar 

  • Mayers MZ, Kaminski JW, Miller TF (2012) Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C 116(50):26214–26221

    Article  Google Scholar 

  • Monroe C, Newman J (2003) Dendrite growth in lithium/polymer systems – a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150(10):A1377–A1384

    Article  Google Scholar 

  • Monroe C, Newman J (2004) The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc 151(6):A880–A886

    Article  Google Scholar 

  • Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404

    Article  Google Scholar 

  • Motoyama M, Ejiri M, Iriyama Y (2015) Modeling the nucleation and growth of li at metal current collector/LiPON interfaces. J Electrochem Soc 162(13):A7067–A7071

    Article  Google Scholar 

  • Mullin JW (2001) Crystallization. Butterworth Heinemann, Boston

    Google Scholar 

  • Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK (2017) Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett 2(1):196–223

    Article  Google Scholar 

  • Nitta N, Yushin G (2014) High-capacity anode materials for lithium- ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31(3):317–336

    Article  Google Scholar 

  • Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  Google Scholar 

  • Ozhabes Y, Gunceler D, and Arias TA (2015) Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv:1504.05799 [cond-mat.mtrl-sci]

    Google Scholar 

  • Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley Interscience, Wiley

    Book  Google Scholar 

  • Pei A, Zheng GY, Shi FF, Li YZ, Cui Y (2017) Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett 17(2):1132–1139

    Article  ADS  Google Scholar 

  • Peng Z, Wang SW, Zhou JJ, Jin Y, Liu Y, Qin YP, Shen C, Han WQ, Wang DY (2016) Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes. J Mater Chem A 4(7):2427–2432

    Article  ADS  Google Scholar 

  • Porz L, Swamy T, Sheldon BW, Rettenwander D, Fromling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM (2017) Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 7(20):1701003

    Google Scholar 

  • Provatas N, Elder K (2010) Phase field methods in material science and engineering. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Rahn CD (2013) Battery systems engineering. Wiley, Chichester

    Book  Google Scholar 

  • Rettenwander D, Redhammer G, Preishuber-Pflugl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff MM, Wilkening M, Fleig J, Amthauer G (2016) Structural and electrochemical consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 solid electrolytes. Chem Mater 28(7):2384–2392

    Article  Google Scholar 

  • Sano H, Sakaebe H, Senoh H, Matsumoto H (2014) Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes. J Electrochem Soc 161(9):A1236–A1240

    Article  Google Scholar 

  • Schaefer JL, Yanga DA, Archer LA (2013) High lithium transference number electrolytes via creation of 3-dimensional, charged, Nanoporous networks from dense functionalized nanoparticle composites. Chem Mater 25(6):834–839

    Article  Google Scholar 

  • Schmickler W, Santos E (2010) Metal deposition and dissolution. Springer, Berlin

    Book  Google Scholar 

  • Schultz, R (2002) Lithium: measurement of young’s modulus and yield strength. Fermilab-TM-2191:1–6

    Google Scholar 

  • Sethuraman VA, Srinivasan V, Bower AF, Guduru PR (2010) In situ measurements of stress-potential coupling in lithiated silicon. J Electrochem Soc 157(11):A1253–A1261

    Article  Google Scholar 

  • Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J (2016) Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J Power Sources 302:135–139

    Article  Google Scholar 

  • Shin WK, Kannan AG, Kim DW (2015) Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur Codoped graphene Nanosheets on polymer separator for lithium metal batteries. ACS Appl Mater Interfaces 7(42):23700–23707

    Article  Google Scholar 

  • Smith RB, Bazant MZ (2017) Multiphase porous electrode theory. J Electrochem Soc 164(11):E3291–E3310

    Article  Google Scholar 

  • Stark JK, Ding Y, Kohl PA (2013) Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. J Electrochem Soc 160(9):D337–D342

    Article  Google Scholar 

  • Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964

    Article  Google Scholar 

  • Stone GM, Mullin SA, Teran AA, Hallinan DT, Minor AM, Hexemer A, Balsara NP (2012) Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J Electrochem Soc 159(3):A222–A227

    Article  Google Scholar 

  • Takehara Z (1997) Future prospects of the lithium metal anode. J Power Sources 68(1):82–86

    Article  Google Scholar 

  • Tang M, Albertus P, Newman J (2009) Two-dimensional modeling of lithium deposition during cell charging. J Electrochem Soc 156(5):A390–A399

    Article  Google Scholar 

  • Tikekar MD, Archer LA, Koch DL (2014) Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J Electrochem Soc 161(6):A847–A855

    Article  Google Scholar 

  • Wood KN, Kazyak E, Chadwick AF, Chen KH, Zhang JG, Thornton K, Dasgupta NP (2016) Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. Acs Cent Sci 2(11):790–801

    Article  Google Scholar 

  • Xu W, Wang JL, Ding F, Chen XL, Nasybutin E, Zhang YH, Zhang JG (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

    Article  Google Scholar 

  • Yamaki J, Tobishima S, Hayashi K, Saito K, Nemoto Y, Arakawa M (1998) A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J Power Sources 74(2):219–227

    Article  Google Scholar 

  • Zheng GY, Lee SW, Liang Z, Lee HW, Yan K, Yao HB, Wang HT, Li WY, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9(8):618–623

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the U. S. Department of Energy (DOE), Vehicle Technologies Office. Argonne National Laboratory is operated for DOE Office of Science by UChicago Argonne LLC under contract number DE-AC02-06CH11357. Lawrence Berkeley National Laboratory is managed for DOE Office of Science by University of California under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Srinivasan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Srinivasan, V., Higa, K., Barai, P., Xie, Y. (2020). Computational Modeling of Morphology Evolution in Metal-Based Battery Electrodes. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_87

Download citation

Publish with us

Policies and ethics