Skip to main content

Modeling of Microstructure Evolution: Mesoscale Challenges

  • Reference work entry
  • First Online:
Handbook of Materials Modeling
  • 3093 Accesses

Abstract

This introductory chapter presents a perspective on multiscale modeling that emphasizes the role and challenges of mesoscale methods and their impact on understanding and predicting material properties. The predictive power of the combined experimental, theoretical, and computational mesoscale approaches is illustrated by a brief discussion of the phase field method and its application to microstructure evolution. After summarizing the main ideas of each chapter in the section, the state of the art and the future of the field are examined by asking and answering four questions: Is the 3-D representation always necessary?, Do mesoscale computational methods capture nonequilibrium?, To what degree are mesoscale methods quantitative?, and Are mesoscale methods computationally efficient?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • BES (2012) From quanta to the continuum: opportunities for meso-scale science, BES report, Department of Energy

    Google Scholar 

  • Bowden N, Terfort A, Carbeck J et al (1997) Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276:233–235

    Article  Google Scholar 

  • Cahn JW (1961) On spinodal decomposition. Acta Metall Mater 9:795–801

    Article  Google Scholar 

  • Cahn JW, Allen SM (1977) A microscopic theory of domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. J Phys Colloq 38:C7–C51

    Article  Google Scholar 

  • Chakraborty P, Zhang YF, Tonks MR (2016) Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method. Comput Mater Sci 113:38–52

    Article  Google Scholar 

  • Chen LQ (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32:113–140

    Article  Google Scholar 

  • Chockalingam K, Millett PC, Tonks MR (2012) Effects of intergranular gas bubbles on thermal conductivity. J Nucl Mater 430:166–170

    Article  ADS  Google Scholar 

  • Geers MGD, Kouznetsova VG, Brekelmans WAM (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175–2182

    Article  Google Scholar 

  • Hu S, Henager CH Jr. (2009) Phase-field modeling of void lattice formation under irradiation. J Nucl Mater 394:155–159

    Google Scholar 

  • Hu S et al (2009) Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels. J Nucl Mater 392:292–300

    Article  ADS  Google Scholar 

  • Hu S et al (2010) Application of the phase-field method in predicting gas bubble microstructure evolution in nuclear fuels. Int J Mater Res 101:515–522

    Article  Google Scholar 

  • Hu SY, Casella A, Lavender CA, Senor DJ, Burkes D (2015) Assessment of effective thermal conductivity in U-Mo metallic fuels with distributed gas bubbles. J Nucl Mater 462:64–76

    Article  ADS  Google Scholar 

  • JonuÅ¡auskas L (2018) Optical 3D printing: bridging the gaps in the mesoscale. J Opt 20:2040–8978

    Article  Google Scholar 

  • Karma A, Rappel WJ (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57:4323–4349

    Article  ADS  Google Scholar 

  • Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2015) An assessment of the phase field formulation for crack growth. Comput Methods Appl Mech Eng 294:313–330

    Article  ADS  MathSciNet  Google Scholar 

  • Li D, Li Y, Hu S, Sun X, Khaleel M (2012) Predicting thermal conductivity evolution of polycrystalline materials under irradiation using multiscale approach. Metall Mater Trans A Phys Metall Mater Sci 43A:1060–1069

    Article  ADS  Google Scholar 

  • Li JH, Zhang JY, Ge W et al (2004) Multi-scale methodology for complex systems. Chem Eng Sci 59:1687–1700

    Article  Google Scholar 

  • Li Y, Hu SY, Sun X, Stan M (2017) A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials. npj Comput Mater 3:16

    Google Scholar 

  • Millett PC, Tonks M (2011a) Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity. J Nucl Mater 412:281–286

    Article  ADS  Google Scholar 

  • Millett PC, Tonks M (2011b) Phase-field simulations of gas density within bubbles in metals under irradiation. Comput Mater Sci 50:2044–2050

    Article  Google Scholar 

  • Millett PC, Wolf D, Desai T, Rokkam S, El-Azab A (2008) Phase-field simulation of thermal conductivity in porous polycrystalline microstructures. J Appl Phys 104:033512

    Article  ADS  Google Scholar 

  • Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32:268–294

    Article  Google Scholar 

  • Opplestrup T, Bulatov VV, Gilmer GH, Kalos MH, Sadigh B (2006) First-passage Monte Carlo algorithm: diffusion without all the hops. Phys Rev Lett 97:230602

    Article  ADS  Google Scholar 

  • Praprotnik M, Delle Site L, Kremer K (2008) Multiscale simulation of soft matter: From scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571

    Article  ADS  Google Scholar 

  • Ratsch C et al (2002) Level-set method for island dynamics in epitaxial growth. Phys Rev B 65:195403

    Article  ADS  Google Scholar 

  • Sarrao JL (2015) Opportunities and advances in mesoscale science. Curr Opinion Solid State Mater Sci 19:201–202

    Article  ADS  Google Scholar 

  • Sarrao JL, Crabtree GW (2012) Opportunities for mesoscale science. MRS Bull 37:1079–1088

    Article  Google Scholar 

  • Sarrao JL, Crabtree GW (2015) Progress in mesoscale science. MRS Bull 40:919–922

    Article  Google Scholar 

  • Short MP, Yip S (2015) Materials aging at mesoscale: kinetics of thermal, stress, radiation activations. Curr Opinion Solid State Mater Sci 19:245–252

    Article  ADS  Google Scholar 

  • Stan M (2009) Discovery and design of nuclear fuels. Mater Today 12:20–28

    Article  Google Scholar 

  • Stan M et al (2007) Models and simulations of nuclear fuel materials properties. J Alloys Compd 444:415–423

    Article  Google Scholar 

  • Steinbach I (2009) Phase-field models in materials science. Model Simul Mater Sci Eng 17:073001

    Article  ADS  Google Scholar 

  • Steinbach I (2013) Phase-field model for microstructure evolution at the mesoscopic scale. Annu Rev Mater Res 43:89–107

    Article  ADS  Google Scholar 

  • Tonks MR, Cheniour A, Aagesen L (2018) How to apply the phase field method to model radiation damage. Comput Mater Sci 147:353

    Article  Google Scholar 

  • Welland MJ, Lewis BJ, Thompson WT (2011) Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel. J Nucl Mater 412:342–349

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Sarrao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stan, M., Sarrao, J.L. (2020). Modeling of Microstructure Evolution: Mesoscale Challenges. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_77

Download citation

Publish with us

Policies and ethics