Skip to main content

Neural Network Potentials in Materials Modeling

  • Reference work entry
  • First Online:

Abstract

The availability of reliable interatomic potentials is necessary for carrying out computer simulations of complex materials. While electronic structure methods like density functional theory have been applied with great success to many systems, the high computational costs of these methods severely restrict the scientific problems that can be studied. Consequently, in recent years a lot of effort has been spent on the development of more efficient potentials enabling large-scale simulations. In particular, machine learning potentials have received considerable attention, because they promise to combine the accuracy of first-principles methods with the efficiency of force fields. In this chapter an important class of machine learning potentials employing artificial neural networks will be reviewed and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Artrith N, Behler J (2012) High-dimensional neural network potentials for metal surfaces: a prototype study for copper. Phys Rev B 85:045439

    Article  ADS  Google Scholar 

  • Artrith N, Kolpak AM (2015) Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput Mater Sci 110:20

    Article  Google Scholar 

  • Artrith N, Urban A (2016) An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Comput Mater Sci 114:135–150

    Article  Google Scholar 

  • Artrith N, Morawietz T, Behler J (2011) High-dimensional neural-network potentials for multicomponent systems: applications to zinc oxide. Phys Rev B 83:153101

    Article  ADS  Google Scholar 

  • Artrith N, Hiller B, Behler J (2013) Neural network potentials for metals and oxides – first applications to copper clusters at zinc oxide. Phys Status Solidi B 250:1191–1203

    Article  ADS  Google Scholar 

  • Bader R (1985) Atoms in molecules. Acc Chem Res 18:9

    Article  Google Scholar 

  • Balabin RM, Lomakina EI (2011) Support vector machine regression (LS-SVM)-an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Phys Chem Chem Phys 13:11710

    Article  Google Scholar 

  • Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403

    Article  ADS  Google Scholar 

  • Behler J (2011a) Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys 134:074106

    Article  ADS  Google Scholar 

  • Behler J (2011b) Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys Chem Chem Phys 13:17930–17955

    Article  Google Scholar 

  • Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Condens Matter 26:183001

    Article  Google Scholar 

  • Behler J (2016) Perspective: machine learning potentials for atomistic simulations. J Chem Phys 145(17):170901

    Article  ADS  Google Scholar 

  • Behler J (2017) First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chem Int Ed 56:12828

    Article  Google Scholar 

  • Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 98:146401

    Article  ADS  Google Scholar 

  • Behler J, Martoňák R, Donadio D, Parrinello M (2008) Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Phys Rev Lett 100:185501

    Article  ADS  Google Scholar 

  • Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Blank TB, Brown SD, Calhoun AW, Doren DJ (1995) Neural network models of potential energy surfaces. J Chem Phys 103:4129–4137

    Article  ADS  Google Scholar 

  • Boes JR, Groenenboom MC, Keith JA, Kitchin JR (2016) Neural network and ReaxFF comparison for Au properties. Int J Quantum Chem 116:979–987

    Article  Google Scholar 

  • Eshet H, Khaliullin RZ, Kühne TD, Behler J, Parrinello M (2012) Microscopic origins of the anomalous melting behavior of sodium under high pressure. Phys Rev Lett 108:115701

    Article  ADS  Google Scholar 

  • Hajinazar S, Shao J, Kolmogorov AN (2017) Stratified construction of neural network-based interatomic models for multicomponent materials. Phys Rev B 95:014114

    Article  ADS  Google Scholar 

  • Handley CM, Popelier PLA (2010) Potential energy surfaces fitted by artificial neural networks. J Phys Chem A 114:3371–3383

    Article  Google Scholar 

  • Haykin S (2001) Kalman filtering and neural networks. Wiley, Hoboken

    Book  Google Scholar 

  • Haykin S (2011) Neural networks and learning machines. Pearson Education, New Dehli

    Google Scholar 

  • Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138

    Article  Google Scholar 

  • Khaliullin RZ, Eshet H, Kühne TD, Behler J, Parrinello M (2011) Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat Mater 10:693–697

    Article  ADS  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quart Appl Math 2:164–168

    Article  MathSciNet  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  MathSciNet  Google Scholar 

  • Morawietz T, Sharma V, Behler J (2012) A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges. J Chem Phys 136:064103

    Article  ADS  Google Scholar 

  • Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833

    Article  ADS  Google Scholar 

  • Natarajan SK, Behler J (2016) Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces. Phys Chem Chem Phys 18:28704

    Article  Google Scholar 

  • Nguyen DH, Widrow B (1990) Neural networks for self-learning control systems. IEEE Control Syst Mag 3:18–23

    Article  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Quaranta V, Hellström M, Behler J (2017) Proton transfer mechanisms at the water-ZnO interface: the role of presolvation. J Phys Chem Lett 8:1476

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  ADS  Google Scholar 

  • Rupp M, Tkatchenko A, Müller KR, von Lilienfeld OA (2012) Fast and accurate modeling of molecular atomization energies with machine learning. Phys Rev Lett 108:058301

    Article  ADS  Google Scholar 

  • Shakouri K, Behler J, Meyer J, Kroes GJ (2017) Accurate neural network description of surface phonons in reactive gas-surface dynamics: N2+Ru(0001). J Phys Chem Lett 8:2131

    Article  Google Scholar 

  • Sosso GC, Miceli G, Caravati S, Behler J, Bernasconi M (2012) Neural network interatomic potential for the phase change material GeTe. Phys Rev B 85:174103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matti Hellström or Jörg Behler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hellström, M., Behler, J. (2020). Neural Network Potentials in Materials Modeling. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_56

Download citation

Publish with us

Policies and ethics