Skip to main content

Optimal Control Theory for Electronic Structure Methods

  • Reference work entry
  • First Online:
  • 3064 Accesses

Abstract

Optimal control theory (OCT) is a branch of mathematics that deals with the problem of finding optimal trajectories for dynamical systems. It can be used in combination with time-dependent quantum mechanical methods that describe the evolution of the electronic and/or nuclear wave functions of atoms, molecules, or materials in the presence of external perturbations, such as electromagnetic fields. OCT may then find the optimal shape of those external perturbations: the optimal character is defined in terms of a functional of the behavior of the system. This chapter provides a brief description of the basic elements of the theory and an overview of its applications to quantum dynamics and electronic structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Attaccalite C, Moroni S, Gori-Giorgi P, Bachelet GB (2002) Correlation energy and spin polarization in the 2D electron gas. Phys Rev Lett 88(25):256601

    Article  ADS  Google Scholar 

  • Beck M, Jackle A, Worth G, Meyer HD (2000) The multiconfiguration time-dependent hartree (mctdh) method: a highly efficient algorithm for propagating wavepackets. Phys Rep 324(1): 1–105

    Article  ADS  Google Scholar 

  • Bellman R (1957) Dynamic programming, 1st edn. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Bloembergen N, Zewail AH (1984) Energy redistribution in isolated molecules and the question of mode-selective laser chemistry revisited. J Phys Chem 88(23):5459–5465

    Article  Google Scholar 

  • Boltyanskii VG, Gamkrelidze RV, Pontryagin LS (1956) On the theory of optimal processes (Russian). Dokl Akad Nauk SSSR (NS) 110:7

    Google Scholar 

  • Brif C, Chakrabarti R, Rabitz H (2010) Control of quantum phenomena: past present and future. New J Phys 12(7):075,008

    Article  Google Scholar 

  • Brumer P, Shapiro M (1986a) Coherent radiative control of unimolecular reactions. Three-dimensional results. Faraday Discuss Chem Soc 82:177–185

    Article  Google Scholar 

  • Brumer P, Shapiro M (1986b) Control of unimolecular reactions using coherent light. Chem Phys Lett 126(6):541–546

    Article  ADS  Google Scholar 

  • Brumer P, Shapiro M (1989) Coherence chemistry: controlling chemical reactions [with lasers]. Acc Chem Res 22(12):407–413

    Article  Google Scholar 

  • Brumer P, Shapiro M (2003) Principles of the quantum control of molecular processes. Wiley, New York

    MATH  Google Scholar 

  • Castro A (2016) Theoretical shaping of femtosecond laser pulses for molecular photodissociation with control techniques based on Ehrenfest’s dynamics and time-dependent density functional theory. ChemPhysChem 17(11):1601–1607

    Article  Google Scholar 

  • Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) Octopus: a tool for the application of time-dependent density functional theory. Phys Status Solidi (b) 243:2465–2488

    Article  ADS  Google Scholar 

  • Castro A, Werschnik J, Gross EKU (2012) Controlling the dynamics of many-electron systems from first principles: a combination of optimal control and time-dependent density-functional theory. Phys Rev Lett 109:153603

    Article  ADS  Google Scholar 

  • Gaubatz U, Rudecki P, Becker M, Schiemann S, Külz M, Bergmann K (1988) Population switching between vibrational levels in molecular beams. Chem Phys Lett 149(5):463–468

    Article  ADS  Google Scholar 

  • Gómez Pueyo A, Budagosky M JA, Castro A (2016) Optimal control with nonadiabatic molecular dynamics: application to the Coulomb explosion of sodium clusters. Phys Rev A 94:063421

    Article  ADS  Google Scholar 

  • Judson RS, Rabitz H (1992) Teaching lasers to control molecules. Phys Rev Lett 68:1500–1503

    Article  ADS  Google Scholar 

  • Kirk DE (1998) Optimal control theory. An introduction. Dover Publications, Inc., New York

    Google Scholar 

  • Kosloff R, Rice SA, Gaspard P, Tersigni S, Tannor DJ (1989) Wavepacket dancing: achieving chemical selectivity by shaping light pulses. Chem Phys 139:201–220

    Article  Google Scholar 

  • Krausz F, Ivanov M (2009) Attosecond physics. Rev Mod Phys 81:163–234

    Article  ADS  Google Scholar 

  • Kuklinski JR, Gaubatz U, Hioe FT, Bergmann K (1989) Adiabatic population transfer in a three-level system driven by delayed laser pulses. Phys Rev A 40:6741–6744

    Article  ADS  Google Scholar 

  • Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Article  ADS  Google Scholar 

  • Marques MAL, Maitra NT, Nogueira FMS, Gross EKU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory. Springer, Berlin/Heidelberg

    Google Scholar 

  • Marques MAL, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited electron-ion dynamics. Comput Phys Commun 151:60–78

    Article  ADS  Google Scholar 

  • Mundt M, Tannor DJ (2009) Optimal control of interacting particles: a multi-configuration time-dependent Hartree-Fock approach. New J Phys 11(10):105038

    Article  MathSciNet  Google Scholar 

  • Nest M, Klamroth T, Saalfrank P (2005) The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. J Chem Phys 122(12):124102

    Article  ADS  Google Scholar 

  • Newton I (1671) A letter of Mr. Isaac Newton, Professor of the Mathematics in the University of Cambridge; containing his new theory about light and colors. Philos Trans 6:3075–3087

    Google Scholar 

  • Peirce A, Dahleh M, Rabitz H (1988) Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys Rev A 37(12):4950

    Article  ADS  MathSciNet  Google Scholar 

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Wiley, New York

    MATH  Google Scholar 

  • Raab A (2000) On the Dirac-Frenkel/Mclachlan variational principle. Chem Phys Lett 319(5): 674–678

    Article  ADS  Google Scholar 

  • Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K (2000) Whither the future of controlling quantum phenomena? Science 288:824

    Article  ADS  Google Scholar 

  • Raghunathan S, Nest M (2011) Critical examination of explicitly time-dependent density functional theory for coherent control of dipole switching. J Chem Theory Comput 7(8):2492–2497

    Article  Google Scholar 

  • Räsänen E, Castro A, Werschnik J, Rubio A, Gross EKU (2007) Optimal control of quantum rings by terahertz laser pulses. Phys Rev Lett 98:157404

    Article  ADS  Google Scholar 

  • Rice SA, Zhao M (2000) Optical control of molecular dynamics. Wiley, New York

    Google Scholar 

  • Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  ADS  Google Scholar 

  • Shi S, Rabitz H (1989) Selective excitation in harmonic molecular systems by optimally designed fields. Chem Phys 139:185–199

    Article  ADS  Google Scholar 

  • Shi S, Woody A, Rabitz H (1988) Optimal control of selective vibrational excitation in harmonic linear chain molecules. J Chem Phys 88(11):6870

    Article  ADS  Google Scholar 

  • Tannor DJ, Rice SA (1985) Control of selectivity of chemical reaction via control of wave packet evolution. J Chem Phys 83(10):5013–5018

    Article  ADS  Google Scholar 

  • Tannor DJ, Kosloff R, Rice SA (1986) Coherent pulse sequence induced control of selectivity of reactions: exact quantum mechanical calculations. J Chem Phys 85(10):5805–5820

    Article  ADS  Google Scholar 

  • van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82(19):3863–3866

    Article  ADS  Google Scholar 

  • van Leeuwen R, Stefanucci G (2013) Nonequilibrium many-body theory of quantum systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Walkenhorst J, De Giovannini U, Castro A, Rubio A (2016) Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra. Eur Phys J B 89(5):128

    Article  ADS  MathSciNet  Google Scholar 

  • Weiner AM (2000) Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71(5):1929–1960

    Article  ADS  Google Scholar 

  • Zhu W, Rabitz H (1998) A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J Chem Phys 109(2):385–391

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economía y Competitividad (MINECO) grants FIS2013-46159-C3-P2, FIS2017-82426-P, and FIS2014-61301-EXP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Castro, A. (2020). Optimal Control Theory for Electronic Structure Methods. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_4

Download citation

Publish with us

Policies and ethics