Skip to main content

Resolving Properties of Entangled Polymers Melts Through Atomistic Derived Coarse-Grained Models

  • Reference work entry
  • First Online:

Abstract

Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites, thus causing their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse-grained models which retain atomistic specificity. Here we probe the degree of coarse graining required to access large length and time scales and simultaneously retain significant atomistic details. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the scale of coarse graining affects the measured dynamics with different number of methylene groups per coarse-grained bead. Using these models, it is currently possible to simulate polyethylene melts for times of order 1 millisecond. This allows one to study a wide range of properties from chain mobility to viscoelastic response for well-entangled polymer melts while retaining atomistic detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams CF, Kremer K (2003) Combined coarse-grained and atomistic simulation of liquid bisphenol a−polycarbonate: liquid packing and intramolecular structure. Macromolecules 36:260–267

    Article  ADS  Google Scholar 

  • Ashbaugh HS, Patel HA, Kumar SK, Garde S (2005) Mesoscale model of polymer melt structure: self-consistent mapping of molecular correlations to coarse-grained potentials. J Chem Phys 122:104908

    Article  ADS  Google Scholar 

  • Chen L-J, Qian H-J, Lu Z-Y, Li Z-S, Sun C-C (2006) An automatic coarse-graining and fine-graining simulation method: application on polyethylene. J Phys Chem B 110:24093–24100

    Article  Google Scholar 

  • Curcó D, Alemán C (2007) Coarse-grained simulations of amorphous and melted polyethylene. Chem Phys Lett 436:189–193

    Article  ADS  Google Scholar 

  • Dallavalle M, van der Vegt NFA (2017) Evaluation of mapping schemes for systematic coarse graining of higher alkanes. Phys Chem Chem Phys 19:23034–23042

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University, Oxford, UK

    Google Scholar 

  • Everaers R, Sukumaran SK, Grest GS, Svaneborg C, Sivasubramanian A, Kremer K (2004) Rheology and microscopic topology of entangled polymeric liquids. Science 303:823–826

    Article  ADS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Fetters LJ, Lohse DJ, Milner ST, Graessley WW (1999) Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights. Macromolecules 32:6847–6851

    Article  ADS  Google Scholar 

  • Fritz D, Koschke K, Harmandaris VA, van der Vegt NF, Kremer K (2011) Multiscale modeling of soft matter: scaling of dynamics. Phys Chem Chem Phys 13:10412–10420

    Article  Google Scholar 

  • Fukunaga H, Takimoto J-i, Doi M (2002) A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions. J Chem Phys 116:8183–8190

    Article  ADS  Google Scholar 

  • de Gennes P-G (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579

    Article  ADS  Google Scholar 

  • Graessley WW, Edwards SF (1981) Entanglement interactions in polymers and the chain contour concentration. Polymer 22:1329–1334

    Article  Google Scholar 

  • Grest GS (2016) Communication: polymer entanglement dynamics: role of attractive interactions. J Chem Phys 145:141101

    Article  ADS  Google Scholar 

  • Guerrault X, Rousseau B, Farago J (2004) Dissipative particle dynamics simulations of polymer melts. I. Building potential of mean force for polyethylene and cis-polybutadiene. J Chem Phys 121:6538–6546

    Article  ADS  Google Scholar 

  • Harmandaris VA, Kremer K (2009) Dynamics of polystyrene melts through hierarchical multiscale simulations. Macromolecules 42:791–802

    Article  ADS  Google Scholar 

  • Harmandaris VA, Reith D, van der Vegt NFA, Kremer K (2007) Comparison between coarse-graining models for polymer systems: two mapping schemes for polystyrene. Macromol Chem Phys 208:2109–2120

    Article  Google Scholar 

  • Hou J-X (2017) Note: determine entanglement length through monomer mean-square displacement. J Chem Phys 146:026101

    Article  ADS  Google Scholar 

  • Hoy RS, Grest GS (2007) Entanglements of an end-grafted polymer brush in a polymeric matrix. Macromolecules 40:8389–8395

    Article  ADS  Google Scholar 

  • Hoy RS, Foteinopoulou K, Kröger M (2009) Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length. Phys Rev E 80:031803

    Article  ADS  Google Scholar 

  • Hsu H-P, Kremer K (2016) Static and dynamic properties of large polymer melts in equilibrium. J Chem Phys 144:154907

    Article  ADS  Google Scholar 

  • Hsu H-P, Kremer K (2017) Detailed analysis of Rouse mode and dynamic scattering function of highly entangled polymer melts in equilibrium. Euro Phys J Special Topics 226:693–703

    Article  ADS  Google Scholar 

  • Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106:6638–6646

    Article  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  Google Scholar 

  • Karimi-Varzabeh HA, van der Vegt NFA, Mueller-Plathe F, Carbone P (2012) How good are coarse-grained models? A comparison for actatic polystyrene. ChemPhysChem 13:3428–3439

    Article  Google Scholar 

  • Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92:5057–5086

    Article  ADS  Google Scholar 

  • Li Y, Abberton BC, Kröger M, Liu WK (2013) Challenges in multiscale modeling of polymer dynamics. Polymer 5:751–832

    Article  Google Scholar 

  • Likhtman AE, McLeish TC (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343

    Article  ADS  Google Scholar 

  • Lodge TP (1999) Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Phys Rev Lett 83:3218

    Article  ADS  Google Scholar 

  • Marrucci G (1985) Relaxation by reptation and tube enlargement: a model for polydisperse polymers. J Polym Sci B Polym Phys 23:159–177

    Article  ADS  Google Scholar 

  • Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102:2569–2577

    Article  Google Scholar 

  • Maurel G, Schnell B, Goujon F, Couty M, Malfreyt P (2012) Multiscale modeling approach toward the prediction of viscoelastic properties of polymers. J Chem Theory Comput 8:4570–4579

    Article  Google Scholar 

  • Maurel G, Goujon F, Schnell B, Malfreyt P (2015) Prediction of structural and thermomechanical properties of polymers from multiscale simulations. RSC Adv 5(19):14065–14073

    Article  Google Scholar 

  • Milano G, Müller-Plathe F (2005) Mapping atomistic simulations to mesoscopic models: a systematic coarse-graining procedure for vinyl polymer chains. J Phys Chem B 109:18609–18619

    Article  Google Scholar 

  • Müller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. ChemPhysChem 3:754–769

    Article  Google Scholar 

  • Nath SK, Escobedo FA, de Pablo JJ (1998) On the simulation of vapor–liquid equilibria for alkanes. J Chem Phys 108:9905–9911

    Article  ADS  Google Scholar 

  • Padding J, Briels WJ (2001) Uncrossability constraints in mesoscopic polymer melt simulations: non-Rouse behavior of CH. J Chem Phys 115:2846–2859

    Article  ADS  Google Scholar 

  • Padding J, Briels WJ (2002) Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations. J Chem Phys 117:925–943

    Article  ADS  Google Scholar 

  • Padding J, Briels WJ (2011) Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. J Phys Condens Matter 23:233101

    Article  ADS  Google Scholar 

  • Paul W, Yoon DY, Smith GD (1995) An optimized united atom model for simulations of polymethylene melts. J Chem Phys 103:1702–1709

    Article  ADS  Google Scholar 

  • Peter C, Kremer K (2009) Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back. Soft Matter 5:4357–4366

    Article  ADS  Google Scholar 

  • Peters BL, Salerno KM, Agrawal A, Perahia D, Grest GS (2017) Coarse grained modeling of polyethylene melts: effect on dynamics. J Chem Theory Comp 13:2890–2896

    Article  Google Scholar 

  • Peters BL, Salerno KM, Ge T, Perahia D, Grest GS (2018) Dynamics of polydispersed, entangled polymer melts. in preparation

    Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  ADS  MATH  Google Scholar 

  • Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636

    Article  Google Scholar 

  • Richter D, Butera R, Fetters L, Huang J, Farago B, Ewen B (1992) Entanglement constraints in polymer melts. A neutron spin echo study. Macromolecules 25:6156–6164

    Article  ADS  Google Scholar 

  • Salerno KM, Bernstein N (2018) Persistence length, end-end distance and structure of coarse-grained polymers. J Chem Theory Comp 14:2219–2229

    Article  Google Scholar 

  • Salerno KM, Agrawal A, Perahia D, Grest GS (2016a) Resolving dynamic properties of polymers through coarse-grained computational studies. Phys Rev Lett 116:058302

    Article  ADS  Google Scholar 

  • Salerno KM, Agrawal A, Peters BL, Perahia D, Grest GS (2016b) Dynamics in entangled polyethylene melts. Euro Phys J Special Topics 225:1707–1722

    Article  ADS  Google Scholar 

  • Schleger P, Farago B, Lartigue C, Kollmar A, Richter D (1998) Clear evidence of reptation in polyethylene from neutron spin-echo spectroscopy. Phys Rev Lett 81:124–127

    Article  ADS  Google Scholar 

  • Siepmann JI, Karaborni S, Smit B (1993) Simulating the critical properties of complex fluids. Nature 365:330–332

    Article  ADS  Google Scholar 

  • Sirk TW, Slizoberg YR, Brennan JK, Lisal M, Andzelm JW (2012) An enhanced entangled polymer model for dissipative particle dynamics. J Chem Phys 136:134903

    Article  ADS  Google Scholar 

  • Siu SW, Pluhackova K, Böckmann RA (2012) Optimization of the OPLS-AA force field for long hydrocarbons. J Chem Theory Comp 8:1459–1470

    Article  Google Scholar 

  • Sun Q, Faller R (2005) Systematic coarse-graining of atomistic models for simulation of polymeric systems. Comput Chem Eng 29:2380–2385

    Article  Google Scholar 

  • Vega JF, Rastogi S, Peters GWM, Meijer HEH (2004) Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt. J Rheol 48:663–678

    Article  ADS  Google Scholar 

  • Voth GA (2008) Coarse-graining of condensed phase and biomolecular systems. CRC press, Boca Raton

    Book  Google Scholar 

  • Wang H, Junghans C, Kremer K (2009) Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining? Euro Phys J E 28:221–229

    Article  Google Scholar 

Download references

Acknowledgments

KMS was supported in part by the National Research Council Associateship Program at the US Naval Research Laboratory. DP kindly acknowledged NSF DMR1611136 for partial support. This work was supported by the Sandia Laboratory Directed Research and Development Program. Research was carried out in part at the Center for Integrated Nanotechnologies, a US Department of Energy Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under Contract DE-NA-0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Grest .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grest, G.S., Michael Salerno, K., Peters, B.L., Ge, T., Perahia, D. (2020). Resolving Properties of Entangled Polymers Melts Through Atomistic Derived Coarse-Grained Models. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_34

Download citation

Publish with us

Policies and ethics