Skip to main content

Line Dislocation Dynamics Simulations with Complex Physics

  • Reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Discrete dislocation dynamics (DDD) simulations provide a technique for examining the effects of fundamental dislocation physics on the plastic response of crystalline solids. Many DDD simulations focus on relatively “simple” materials and loading conditions, such as glide-motion-dominated plasticity of pure cubic crystals. The goal of this chapter is to provide an overview of the more “complex” physical aspects of dislocation-mediated plasticity in the context of DDD. We consider both physics that are intrinsic to the crystal lattice (elastic anisotropy, nonlinear drag, and low crystallographic symmetry) and extrinsic physics that are due to defects other than dislocations (solutes, vacancies, precipitates, and grain boundaries). For each of these classes of physics, we first discuss the conditions under which they are relevant, followed by an examination of the fundamental ways in which the behaviors of dislocations are affected by the physics, and finally a presentation of the methods that have been developed for incorporating the physics in DDD. We end the chapter by discussing three example simulations where complex physics are consequential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew S, Horton J, MH Y (2002) Transmission electron microscopy investigation of <c+a> dislocations in mg and α-solids solution Mg-Li alloys. Metall Mater Trans A 33A:851

    Google Scholar 

  • Argon AS (2008) Strengthening mechanisms in crystal plasticity. Oxford University Press, Oxford

    Google Scholar 

  • Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15(6):553–595

    Article  ADS  Google Scholar 

  • Aubry S, Arsenlis A (2013) Use of spherical harmonics for dislocation dynamics in anisotropic elastic media. Model Simul Mater Sci Eng 21(6):065013

    Article  ADS  Google Scholar 

  • Aubry S, Fitzgerald S, Dudarev S, Cai W (2011) Equilibrium shapes of dislocation shear loops in anisotropic -Fe. Model Simul Mater Sci Eng 19:065006

    Article  ADS  Google Scholar 

  • Aubry S, Rhee M, Hommes G, Bulatov V, Arsenlis A (2016) Dislocation dynamics in hexagonal close-packed crystals. J Mech Phys Solids 94:105–126

    Article  ADS  MathSciNet  Google Scholar 

  • Bakó B, Clouet E, Dupuy LM, Blétry M (2011) Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos Mag 91:3173–3191

    Article  ADS  Google Scholar 

  • Barton NR, Bernier JV, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park HS, Remington BA, Olson RT (2011) A multiscale strength model for extreme loading conditions. J Appl Phys 109(7):073501

    Article  ADS  Google Scholar 

  • Biswas A, Siegel DJ, Wolverton C, Seidman DN (2011) Precipitates in Al-Cu alloys revisited: atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater 59(15):6187–6204

    Article  Google Scholar 

  • Boyd JD, Nicholson RB (1971) The coarsening behaviour of θ″ and θ′ precipitates in two Al-Cu alloys. Acta Metall 19: 1379–1391

    Article  Google Scholar 

  • Bulatov VV, Cai W (2006) Computer simulations of dislocations. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Cai W, Bulatov V (2004) Mobility laws in dislocation dynamics simulations. Mat Sci Eng A 387–389:277–281

    Article  Google Scholar 

  • Cai W, Nix WD (2016) Imperfections in crystalline solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cai W, Sills RB, Barnett DM, Nix WD (2014) Modeling a distribution of point defects as misfitting inclusions in stressed solids. J Mech Phys Sol 66:154–171

    Article  ADS  MATH  Google Scholar 

  • Chateau JP, Delafosse D, Magnin T (2002) Numerical simulations of hydrogen-dislocation interactions in FCC stainless steels. Acta Mater 50(6):1507–1522

    Article  Google Scholar 

  • Chen Q, Liu XY, Biner SB (2008) Solute and dislocation junction interactions. Acta Mater 56(13):2937–2947

    Article  Google Scholar 

  • Cottrell AH, Jaswon MA (1949) Distribution of solute atoms round a slow dislocation. Proc Phys Soc A 62:104–114

    Article  MATH  Google Scholar 

  • Crone CC, Chung PW, Leiter KW, Knap J, Aubry S, Hommes G, Arsenlis A (2014) A multiply parallel implementation of finite element-based discrete dislocation dynamics for arbitrary geometries. Model Simul Mater Sci Eng 22(3):035014

    Article  ADS  Google Scholar 

  • de Koning M, Kurtz RJ, Bulatov VV, Henager CH, Hoagland RG, Cai W, Nomura M (2003) Modeling of dislocation-grain boundary interactions in FCC metals. J Nucl Mater 323:281–289

    Article  ADS  Google Scholar 

  • Delafosse D (2012) Hydrogen effects on the plasticity of face centred cubic (FCC) crystals, chap 9. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies. Mechanisms, modelling and future developments, vol 2. Woodhead Publishing Limited, Cambridge, pp 247–285

    Chapter  Google Scholar 

  • Eshelby JD (1961) Elastic inclusions and inhomogeneities, chap 3. In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol II. North-Holland Publishing Company, Amsterdam, pp 87–140

    Google Scholar 

  • Fan H, Li Z, Huang M (2012) Toward a further understanding of intermittent plastic responses in the compress single/bicrystalline micropillars. Scr Mater 66:813–816

    Article  Google Scholar 

  • Fan H, Aubry S, Arsenlis A, El-Awady JA (2015) The role of twinning deformation on the hardening reponse of polycrsytalline magnesium from discrete dislocation dynamics simulations. Acta Mater 92:126–139

    Article  Google Scholar 

  • Fitzgerald S, Aubry S, Dudarev S, Cai W (2012) Discrete dislocation dynamics simulation of Frank-Read sources in anisotropic α-fe. Modell Simul Mater Sci Eng 20:045022

    Article  ADS  Google Scholar 

  • Gao Y, Zhuang Z, Liu ZL, You XC, Zhao XC, Zhang ZH (2011) Investigations of pipe-diffusion-based dislocation climb by discrete dislocation dynamics. Int J Plast 27:1055–1071

    Article  MATH  Google Scholar 

  • Gilbert MR, Queyreau S, Marian J (2011) Stress and temperature dependence of screw dislocation in α-Fe by molecular dynamics. Phys Rev B 85:174103

    Article  ADS  Google Scholar 

  • Groh S, Marin EB, Horstemeyer MF, Bammann DJ (2009) Dislocation motion in magnesium: a study by molecular statics and molecular dynamics. Modell Simul Mater Sci Eng 17(7):075009

    Article  ADS  Google Scholar 

  • Gu Y, Xiang Y, Quek SS, Srolovitz DJ (2015) Three-dimensional formulation of dislocation climb. J Mech Phys Sol 83:319–337

    Article  ADS  MathSciNet  Google Scholar 

  • Hirth JP, Lothe J (1992) Theory of dislocations. Wiley, New York

    MATH  Google Scholar 

  • Hull D, Bacon DJ (2011) Introduction to dislocations. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Kirchheim R (2007) Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation II. Experimental evidence and consequences. Acta Mater 55:5139–5148

    Article  Google Scholar 

  • Kubin LP (2013) Dislocations, mesoscale simulations, and plastic flow. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kubin LP, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom 23 & 24:455–472

    Google Scholar 

  • Lubarda V, Blume J, Needleman A (1993) An analysis of equilibrium dislocation distributions. Acta Metal Mater 41(2):625–642

    Article  Google Scholar 

  • Marian J, Caro A (2006) Moving dislocations in disordered alloys: connecting continuum and discrete models with atomistic simulations. Phys Rev B 74:024113

    Article  ADS  Google Scholar 

  • Medvedeva NI, Gornostyrev YN, Freeman AJ (2005) Solid solution softening in BCC Mo alloys: effect of transition-metal additions on dislocation structure and mobility. Phys Rev B 72:124107

    Article  Google Scholar 

  • Mohles V (2001) Orowan process controlled dislocation glide in materials containing incoherent particles. Mat Sci Eng A 309–310:265–269

    Article  Google Scholar 

  • Mohles V (2003) Superposition of dispersion strengthening and size-mismatch strengthening: computer simulations. Philos Mag Lett 83:9–19

    Article  ADS  Google Scholar 

  • Mohles V (2004) Dislocation dynamics simulations of particle strengthening, chap 17. In: Raabe D, Roters F, Barlat F, Chen LQ (eds) Continuum scale simulation of engineering materials. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 368–388

    Google Scholar 

  • Mohles V, Fruhstorfer B (2002) Computer simulations of Orowan process controlled dislocation glide in particle arrangements of various randomness. Acta Mater 50:2503–2516

    Article  Google Scholar 

  • Monnet G (2006) Investigation of precipitation hardening by dislocation dynamics simulations. Philos Mag 86(36):5827–5941

    Article  Google Scholar 

  • Monnet G (2015) Multiscale modeling of precipitation hardening: application to the FeCr alloys. Acta Mater 95:302–311

    Article  Google Scholar 

  • Monnet G, Devincre B (2006) Solute friction and forest interaction. Philos Magaz 86(11): 1555–1565

    Article  ADS  Google Scholar 

  • Mordehai D, Clouet E, Fivel M, Verdier M (2008) Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics. Philos Mag 88:899–925

    Article  ADS  Google Scholar 

  • Munday LB, Crone JC, Knap J (2015) The role of free surfaces on the formation of prismatic dislocation loops. Scr Mater 103:65–68

    Article  Google Scholar 

  • Mura T (1987) Micromechanics of defects in solids. Kluwer Academic Publishers, Dordrecht (NL)

    Book  MATH  Google Scholar 

  • Niu X, Luo T, Lu J, Xiang Y (2017) Dislocation climb models from atomistic scheme to dislocation dynamics. J Mech Phys Sol 99:242–258

    Article  ADS  MathSciNet  Google Scholar 

  • Nöhring WG, Curtin WA (2017) Dislocation cross-slip in fcc solid solution alloys. Acta Mater 128:135–148

    Article  Google Scholar 

  • Olmsted DL, Hector LG, Curtin WA, Clifton RJ (2005) Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model Simul Mater Sci Eng 105:371–388

    Article  ADS  Google Scholar 

  • Po G, Cui Y, Rivera D, Cereceda D, Swinburne TD, Marian J, Ghoniem N (2016) A phenomenological dislocation mobility law for BCC metals. Acta Mater 119:123–135

    Article  Google Scholar 

  • Queyreau S, Monnet G, Devincre B (2010) Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater 58(17):5586–5595

    Article  Google Scholar 

  • Rao SI, Parthasarathy TA, Dimiduk DM, Hazzledine PM (2004) Discrete dislocation simulations of precipitation hardening in superalloys. Philos Mag 84(30):3195–3215

    Article  ADS  Google Scholar 

  • Reed-Hill RE, Abbaschian R (1992) Physical metallurgy principles. PWS-Kent, Boston

    Google Scholar 

  • Rhee M, Stolken JS, Bulatov VV, Diaz de la Rubia T, Zbib HM, Hirth JP (2001) Dislocation stress fields for dynamic codes using anisotropic elasticity: methodology and analysis. Model Simul Mater Sci Eng A 309–310:288–293

    Article  Google Scholar 

  • Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296

    Article  Google Scholar 

  • Schwarz KW (2003) Local rules for approximating strong dislocation interactions in discrete dislocation dynamics. Model Simul Mater Sci Eng 11:609–625

    Article  ADS  Google Scholar 

  • Shin CS, Fivel MC, Verdier M, Oh KH (2003) Dislocation-impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis. Philos Mag 83(31–34):3691–3704

    Article  ADS  Google Scholar 

  • Sills RB (2016) Dislocation dynamics of face-centered cubic metals and alloys. PhD thesis, Stanford University

    Google Scholar 

  • Sills RB, Cai W (2016) Solute drag on perfect and extended dislocations. Philos Mag 96:895–921

    Article  ADS  Google Scholar 

  • Sills RB, Cai W (2018) Free energy change of a dislocation due to a Cottrell atmosphere. Philos Mag 98(16):1491–1510

    Article  ADS  Google Scholar 

  • Sills RB, Kuykendall WP, Aghaei AA, Cai W (2016) Fundamentals of dislocation dynamics simulations, chap 2. In: Weinberger CR, Tucker GJ (eds) Multiscale materials modeling for nanomechanics. Springer, Cham, pp 53–87

    Chapter  Google Scholar 

  • Singh CV, Warner DH (2013) An atomistic-based hierarchical multiscale examination of age hardening in an Al-Cu alloy. Metal Mater Trans A: Phys Metal Mater Sci 44:2625–2644

    Article  ADS  Google Scholar 

  • Sofronis P, Birnbaum HK (1994) Mechanics of the hydrogen-dislocation-impurity interactions–I. Increasing shear modulus. J Mech Phys Solids 43(1):49–90

    Article  ADS  MATH  Google Scholar 

  • Spearot DE, Sangid MD (2014) Insights on slip transmission at grain boundaries from atomistic simulations. Curr Opin Solid State Mater Sci 18:188–195

    Article  ADS  Google Scholar 

  • Takahashi A, Ghoniem N (2008) A computational method for dislocation-precipitate interaction. J Mech Phys Solids 56(4):1534–1553

    Article  ADS  MATH  Google Scholar 

  • Tang M (2005) A lattice based screw-edge dislocation dynamics simulation of body center cubic single crystals, chap 2.22. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht (NL), pp 827–837

    Chapter  Google Scholar 

  • Van der Giessen V, Needleman A (1995) Discrete dislocation plasticity: a simple planar model. Model Simul Mater Sci Eng 3(5):689

    Article  ADS  Google Scholar 

  • Van der Giessen E, Needleman A (2005) Discrete dislocation plasticity, chap 3.4. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht (NL), pp 1115–1131

    Chapter  Google Scholar 

  • Varvenne C, Leyson GPM, Ghazisaeidi M, Curtin WA (2017) Solute strengthening in random alloys. Acta Mater 124:660–683

    Article  Google Scholar 

  • Ventelon L, Lüthi B, Clouet E, Proville L, Legrand B, Rodney D, Willaime F (2015) Dislocation core reconstruction induced by cargon segregation in BCC iron. Phys Rev B 91:220102_1–5

    Google Scholar 

  • Weinberger CR, Cai W (2007) Computing image stress in an elastic cylinder. J Mech Phys Solids 55(10):2027–2054

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Weinberger CR, Aubry S, Lee SW, Cai W (2009a) Dislocation dynamics simulations in a cylinder. In: Proceedings of the dislocations 2008 international conference. IOP conference series: materials science and engineering, Dislocations 2008, Hong Kong

    Google Scholar 

  • Weinberger CR, Aubry S, Lee SW, Nix WD, Cai W (2009b) Modelling dislocations in a free-standing thin film. Model Simul Mater Sci Eng 17:075007–075034

    Article  ADS  Google Scholar 

  • Wen M, Fukuyama S, Yokogawa K (2007) Cross-slip process in FCC nickel with hydrogen in a stacking fault: an atomistic study using the embedded-atom method. Phys Rev B 75:14410_1–4

    Google Scholar 

  • Weygand D, Friedman LH, Van der Giessen E, Needleman A (2002) Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Model Simul Mater Sci Eng 10(4):437–468

    Article  ADS  Google Scholar 

  • Wu Z, Curtin W (2015) The origins of high hardening and low ductility in magnesium. Nature 526:62–67

    Article  ADS  Google Scholar 

  • Yin J, Barnett DM, Cai W (2010) Efficient computation of forces on dislocation segments in anisotropic elasticity. Model Simul Mater Sci Eng 18:045013

    Article  ADS  Google Scholar 

  • Zbib HM, Khraishi TA (2005) Dislocation dynamics, chap 3.3. In: Yip S (ed) Handbook of materials modeling. Springer, Dordrecht/London, pp 1097–1114

    Chapter  Google Scholar 

  • Zhou C, LeSar R (2012) Dislocation dynamics simulations of plasticiy in polycrystalline thin films. Int J Plast 30–31:185–201

    Article  Google Scholar 

Download references

Acknowledgments

This paper describes objective technical results and analysis. Any subjective views of opinions that might be expressed in this paper do not necessarily represent the views of the U. S. Department of Energy of the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Sills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sills, R.B., Aubry, S. (2020). Line Dislocation Dynamics Simulations with Complex Physics. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-44677-6_19

Download citation

Publish with us

Policies and ethics