Skip to main content

Neuroendocrinology of Bone Metabolism

  • Reference work entry
  • First Online:
Hypothalamic-Pituitary Diseases

Part of the book series: Endocrinology ((ENDOCR))

Abstract

Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. As a matter of fact, skeletal fragility associated with high risk of fractures is a common complication of pituitary diseases characterized by either hypo- or hyperfunction of the pituitary gland. This chapter deals with physiological, pathophysiological, clinical, and therapeutic aspects concerning the effects of pituitary hormones on skeletal health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah BM, Ding M, Jensen CH, et al. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone. Endocrinology. 2007;148:3111–21.

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Kader N, Cardiel MH, Navarro Compan V, et al. Cushing’s disease as a cause of severe osteoporosis: a clinical challenge. Reumatol Clin. 2012;8:278–9.

    Article  PubMed  Google Scholar 

  • Abe E, Marians RC, Yu W, et al. TSH is a negative regulator of skeletal remodeling. Cell. 2003;115:151–62.

    Article  CAS  PubMed  Google Scholar 

  • Abrahamsen B, Hangaard J, Horn HC, et al. Evaluation of the optimum dose of growth hormone (GH) for restoring bone mass in adult-onset GH deficiency: results from two 12-month randomized studies. Clin Endocrinol. 2002;57:273–81.

    Article  CAS  Google Scholar 

  • Arwert LI, Roos JC, Lips P, et al. Effects of 10 years of growth hormone (GH) replacement therapy in adult GH-deficient men. Clin Endocrinol. 2005;63:310–6.

    Article  CAS  Google Scholar 

  • Barake M, Klibanski A, Tritos NA. Effects of recombinant human growth hormone therapy on bone mineral density in adults with growth hormone deficiency: a meta-analysis. J Clin Endocrinol Metab. 2014;99:852–60.

    Article  CAS  PubMed  Google Scholar 

  • Biller BMK, Sesmilo G, Baum HBA, Hayden D, Schoenfeld D, Klibanski A. Withdrawal of long-term physiological growth hormone (GH) administration: differential effects on bone density and body composition in men with adult-onset GH deficiency. J Clin Endocrinol Metab. 2000;85:970–6.

    CAS  PubMed  Google Scholar 

  • Bonadonna S, Mazziotti G, Nuzzo M, et al. Increased prevalence of radiological spinal deformities in active acromegaly: a cross-sectional study in postmenopausal women. J Bone Miner Res. 2005;20:1837–44.

    Article  PubMed  Google Scholar 

  • Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007a;35:905–16.

    Article  Google Scholar 

  • Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007b;18:1319–28.

    Article  CAS  PubMed  Google Scholar 

  • Claessen KM, Kroon HM, Pereira AM, et al. Progression of vertebral fractures despite long-term biochemical control of acromegaly: a prospective follow-up study. J Clin Endocrinol Metab. 2013;98:4808–15.

    Article  CAS  PubMed  Google Scholar 

  • Claessen KM, Mazziotti G, Biermasz NR, Giustina A. Bone and joint disorders in acromegaly. Neuroendocrinology. 2016;103:86–95.

    Article  CAS  PubMed  Google Scholar 

  • Clark EM, Carter L, Gould VC, et al. Vertebral fracture assessment (VFA) by lateral DXA scanning may be cost-effective when used as part of fracture liaison services or primary care screening. Osteoporos Int. 2014;25:953–64.

    Article  CAS  PubMed  Google Scholar 

  • Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ III. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1993;7:221–7.

    Article  Google Scholar 

  • Coss D, Yang L, Kuo CB, et al. Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am J Physiol Endocrinol Metab. 2000;279:E1216–25.

    Article  CAS  PubMed  Google Scholar 

  • D’Sylva C, Khan T, Van Uum S, Fraser LA. Osteoporotic fractures in patients with untreated hyperprolactinemia vs. those taking dopamine agonists: a systematic review and meta-analysis. Neuro Endocrinol Lett. 2015;36:745–9.

    PubMed  Google Scholar 

  • Davidson P, Milne R, Chase D, et al. Growth hormone replacement in adults and bone mineral density: a systematic review and meta-analysis. Clin Endocrinol. 2004;60:92–8.

    Article  CAS  Google Scholar 

  • Devleta B, Adem B, Senada S. Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J Bone Miner Metab. 2004;22:360–4.

    Article  PubMed  Google Scholar 

  • Di Somma C, Colao A, Di Sarno A, et al. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J Clin Endocrinol Metab. 1998;83:807–13.

    Article  PubMed  Google Scholar 

  • Diamond T, Nery L, Posen S. Spinal and peripheral bone mineral densities in acromegaly: the effects of excess growth hormone and hypogonadism. Ann Intern Med. 1989;111:567–73.

    Article  CAS  PubMed  Google Scholar 

  • Digirolamo DJ, Mukherjee A, Fulzele K, et al. Mode of growth hormone action in osteoblasts. J Biol Chem. 2007;282:31666–74.

    Article  CAS  PubMed  Google Scholar 

  • Drake MT, McCready LK, Hoey KA, Atkinson EJ, Khosla S. Effects of suppression of follicle-stimulating hormone (FSH) secretion on bone resorption markers in postmenopausal women. J Clin Endocrinol Metab. 2010;95:5063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbornsson M, Gotherstrom G, Bosaeus I, et al. Fifteen years of GH replacement increases bone mineral density in hypopituitary patients with adult-onset GH deficiency. Eur J Endocrinol. 2012;166:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faggiano A, Pivonello R, Filippella M, et al. Spine abnormalities and damage in patients cured from Cushing’s disease. Pituitary. 2001;4:153–61.

    Article  CAS  PubMed  Google Scholar 

  • Genant HK, Jergas M, Palermo L, et al. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1996;11:984–96.

    Article  CAS  PubMed  Google Scholar 

  • Giavoli C, Libé R, Corbetta S, et al. Effect of recombinant human growth hormone (GH) replacement on the hypothalamic-pituitary-adrenal axis in adult GH-deficient patients. J Clin Endocrinol Metab. 2004;89:5397–401.

    Article  CAS  PubMed  Google Scholar 

  • Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19:717–97.

    CAS  PubMed  Google Scholar 

  • Giustina A, Casanueva FF, Cavagnini F, et al. Diagnosis and treatment of acromegaly complications. J Endocrinol Invest. 2003;26:1242–7.

    Article  CAS  PubMed  Google Scholar 

  • Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29:535–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giustina A, Mazziotti G. Growth hormone replacement therapy and fracture risk. Lancet Diabetes Endocrinol. 2015;3:307–8.

    Article  PubMed  Google Scholar 

  • Gogakos AI, Duncan Bassett JH, Williams GR. Thyroid and bone. Arch Biochem Biophys. 2010;503:129–36.

    Article  CAS  PubMed  Google Scholar 

  • Griffith JF, Genant HK. New advances in imaging osteoporosis and its complications. Endocrine. 2012;42:39–51.

    Article  CAS  PubMed  Google Scholar 

  • Högler W, Shaw N. Childhood growth hormone deficiency, bone density, structures and fractures: scrutinizing the evidence. Clin Endocrinol. 2010;72:281–9.

    Article  CAS  Google Scholar 

  • Hubina E, Lakatos P, Kovacs L, et al. Effects of 24 months of growth hormone (GH) treatment on serum carboxylated and undercarboxylated osteocalcin levels in GH-deficient adults. Calcif Tissue Int. 2004;74:55–9.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal J, Blair HC, Zallone A, et al. Further evidence that FSH causes bone loss independently of low estrogen. Endocrine. 2012;412:171–5.

    Article  CAS  Google Scholar 

  • Isales CM, Zaidi M, Blair HC. ACTH is a novel regulator of bone mass. Ann N Y Acad Sci. 2010;1192:110–6.

    Article  CAS  PubMed  Google Scholar 

  • Kaji H, Sugimoto T, Nakaoka D, et al. Bone metabolism and body composition in Japanese patients with active acromegaly. Clin Endocrinol. 2001;55:175–81.

    Article  CAS  Google Scholar 

  • Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr Rev. 2014;35:234–81.

    Article  PubMed  CAS  Google Scholar 

  • Kassem M, Blum W, Ristelli J, et al. Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int. 1993;52:222–6.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman JM, Taelman P, Vermeulen A, Vandeweghe M. Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab. 1992;74:118–23.

    CAS  PubMed  Google Scholar 

  • Kayath MJ, Vieira JG. Osteopenia occurs in a minority of patients with acromegaly and is predominant in the spine. Osteoporos Int. 1997;7:226–30.

    Article  CAS  PubMed  Google Scholar 

  • Klibanski A, Greenspan SL. Increase in bone mass after treatment of hyperprolactinemic amenorrhea. N Engl J Med. 1986;315:542–6.

    Article  CAS  PubMed  Google Scholar 

  • Klibanski A, Biller BM, Rosenthal DI, et al. Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J Clin Endocrinol Metab. 1988;67:124–30.

    Article  CAS  PubMed  Google Scholar 

  • Kotzmann H, Bernecker P, Hubsch P, et al. Bone mineral density and parameters of bone metabolism in patients with acromegaly. J Bone Miner Res. 1993;8:459–65.

    Article  CAS  PubMed  Google Scholar 

  • Longobardi S, Di Somma C, Di Rella F, et al. Bone mineral density and circulating cytokines in patients with acromegaly. J Endocrinol Invest. 1998;21:688–93.

    Article  CAS  PubMed  Google Scholar 

  • Madeira M, Neto LV, de Paula Paranhos Neto F, et al. Acromegaly has a negative influence on trabecular bone, but not on cortical bone, as assessed by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2013;98:1734–41.

    Article  CAS  PubMed  Google Scholar 

  • Maffezzoni F, Maddalo M, Frara S, et al. Cone beam tomography analysis of bone microarchitecture in patients with acromegaly and vertebral fractures. Endocrine. 2016;54:532–42.

    Article  CAS  PubMed  Google Scholar 

  • Mancini T, Porcelli T, Giustina A. Treatment of Cushing disease: overview and recent findings. Ther Clin Risk Manag. 2010;6:505–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins MR, Doin FC, Komatsu WR, et al. Growth hormone replacement improves thyroxine biological effects: implications for management of central hypothyroidism. J Clin Endocrinol Metab. 2007;92:4144–53.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Sorvillo F, Piscopo M, et al. Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J Bone Miner Res. 2005;20:480–6.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Angeli A, Bilezikian JP, et al. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab. 2006a;17:144–9.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Bianchi A, Bonadonna S, et al. Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: influence of GH replacement therapy. J Bone Miner Res. 2006b;21:520–8.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Bianchi A, Cimino V, et al. Effect of gonadal status on bone mineral density and radiological spinal deformities in adult patients with growth hormone deficiency. Pituitary. 2008a;11:55–61.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Bianchi A, Bonadonna S, et al. Prevalence of vertebral fractures in men with acromegaly. J Clin Endocrinol Metab. 2008b;93:4649–55.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Porcelli T, Patelli I, et al. Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone. 2010a;46:747–51.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Canalis E, Giustina A. Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med. 2010b;123:877–84.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Porcelli T, Bianchi A, et al. Glucocorticoid replacement therapy and vertebral fractures in hypopituitary adult males with GH deficiency. Eur J Endocrinol. 2010c;163:15–20.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Mancini T, Mormando M, et al. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary. 2011a;14:299–306.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Porcelli T, Mormando M, et al. Vertebral fractures in males with prolactinoma. Endocrine. 2011b;39:288–93.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Bilezikian J, Canalis E, et al. New understanding and treatments for osteoporosis. Endocrine. 2012;41:58–69.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Giustina A. Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol. 2013a;95:265–76.

    Article  CAS  Google Scholar 

  • Mazziotti G, Bianchi A, Porcelli T, et al. Vertebral fractures in patients with acromegaly: a 3-year prospective study. J Clin Endocrinol Metab. 2013b;98:3402–10.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Mormando M, Cristiano A, et al. Association between l-thyroxine treatment, GH deficiency, and radiological vertebral fractures in patients with adult-onset hypopituitarism. Eur J Endocrinol. 2014;170:893–9.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Chiavistelli S, Giustina A. Pituitary diseases and bone. Endocrinol Metab Clin North Am. 2015a;44:171–80.

    Article  PubMed  Google Scholar 

  • Mazziotti G, Biagioli E, Maffezzoni F, et al. Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2015b;100:384–94.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Delgado A, Maffezzoni F, Formenti AM, Giustina A. Skeletal fragility in endogenous hypercortisolism. Front Horm Res. 2016a;46:66–73.

    Article  PubMed  Google Scholar 

  • Mazziotti G, Formenti AM, Adler RA, et al. Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/vitamin D axes, treatment options and guidelines. Endocrine. 2016b;54:603–11.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Doga M, Frara S, et al. Incidence of morphometric vertebral fractures in adult patients with growth hormone deficiency. Endocrine. 2016c;52:103–10.

    Article  CAS  PubMed  Google Scholar 

  • Mazziotti G, Maffezzoni F, Frara S, Giustina A. Acromegalic osteopathy. Pituitary. 2017;20:63–9.

    Article  CAS  PubMed  Google Scholar 

  • Melmed S, Casanueva FF, Klibanski A, et al. A consensus on the diagnosis and treatment of acromegaly complications. Pituitary. 2013;16:294–302.

    Article  CAS  PubMed  Google Scholar 

  • Mo D, Fleseriu M, Qi R, et al. Fracture risk in adult patients treated with growth hormone replacement therapy for growth homone deficiency: a prospective cohort study. Lancet Diabetes Endocrinol. 2015;3:331–8.

    Article  CAS  PubMed  Google Scholar 

  • Molitch ME, Clemmons DR, Malozowski S, et al. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2006;91:1621–34.

    Article  CAS  PubMed  Google Scholar 

  • Mrak E, Villa I, Lanzi R, Losa M, Guidobono F, Rubinacci A. Growth hormone stimulates osteoprotegerin expression and secretion in human osteoblast-like cells. J Endocrinol. 2007;192:639–45.

    Article  CAS  PubMed  Google Scholar 

  • Murray RD, Adams JE, Shalet SM. A densitometric and morphometric analysis of the skeleton in adults with varying degrees of growth hormone deficiency. J Clin Endocrinol Metab. 2006;91:432–8.

    Article  CAS  PubMed  Google Scholar 

  • Naliato EC, Violante AH, Caldas D, et al. Bone density in women with prolactinoma treated with dopamine agonists. Pituitary. 2008;11:21–8.

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson C, Bengtsson BA, Isaksson OG, et al. Growth hormone and bone. Endocr Rev. 1998;19:55–79.

    CAS  PubMed  Google Scholar 

  • Omodei U, Mazziotti G, Donarini G, et al. Effects of recombinant follicle-stimulating hormone on bone turnover markers in infertile women undergoing in vitro fertilization procedure. J Clin Endocrinol Metab. 2013;981:330–6.

    Article  CAS  Google Scholar 

  • Randazzo ME, Grossrubatscher E, Dalino Ciaramella P, et al. Spontaneous recovery of bone mass after cure of endogenous hypercortisolism. Pituitary. 2012;15:193–201.

    Article  CAS  PubMed  Google Scholar 

  • Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

    Article  CAS  PubMed  Google Scholar 

  • Rosen T, Wilhelmsen L, Landin-Wilhelmsen K, et al. Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol. 1997;137:240–5.

    Article  CAS  PubMed  Google Scholar 

  • Rubin J, Ackert-Bicknell CL, Zhu L, et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab. 2002;87(9):4273.

    Article  CAS  PubMed  Google Scholar 

  • Schousboe JT, Shepherd JA, Bilezikian JP, et al. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom. 2013;16:455–66.

    Article  PubMed  Google Scholar 

  • Scillitani A, Mazziotti G, Di Somma C, et al. Treatment of skeletal impairment in patients with endogenous hypercortisolism: when and how? Osteoporos Int. 2014;25:441–6.

    Article  CAS  PubMed  Google Scholar 

  • Seriwatanachai D, Charoenphandhu N, Suthiphongchai T, et al. Prolactin decreases the expression ratio of receptor activator of nuclear factor kappaB ligand/osteoprotegerin in human fetal osteoblast cells. Cell Biol Int. 2008a;32:1126–35.

    Article  CAS  PubMed  Google Scholar 

  • Seriwatanachai D, Thongchote K, Charoenphandhu N, et al. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone. 2008b;42:535–46.

    Article  CAS  PubMed  Google Scholar 

  • Seriwatanachai D, Krishnamra N, van Leeuwen JP. Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization. J Cell Biochem. 2009;107:677–85.

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass. Cell. 2006;125:247–60.

    Article  CAS  PubMed  Google Scholar 

  • Szappanos A, Toke J, Lippai D, et al. Bone turnover in patients with endogenous Cushing’s syndrome before and after successful treatment. Osteoporos Int. 2010;21:637–45.

    Article  CAS  PubMed  Google Scholar 

  • Tamma R, Colaianni G, Zhu LL, et al. Oxytocin is an anabolic bone hormone. Proc Natl Acad Sci U S A. 2009;106:7149–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamma R, Sun L, Cuscito C, et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc Natl Acad Sci U S A. 2013;110:18644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trementino L, Appolloni G, Ceccoli L, et al. Bone complications in patients with Cushing’s syndrome: looking for clinical, biochemical, and genetic determinants. Osteoporos Int. 2014;25:913–21.

    Article  CAS  PubMed  Google Scholar 

  • Ueland T, Bollerslev J, Flyvbjerg A, et al. Effects of 12 months of growth hormone (GH) treatment on cortical and trabecular bone content of insulin like growth factors (IGF) and osteoprotegerin in adults with acquired GH deficiency: a double-blind, randomized, placebo-controlled study. J Clin Endocrinol Metab. 2002;87:2760–3.

    Article  CAS  PubMed  Google Scholar 

  • Ueland T, Fougner SL, Godang K, Schreiner T, Bollerslev J. Serum GH and IGF-I are significant determinants of bone turnover but not bone mineral density in active acromegaly: a prospective study of more than 70 consecutive patients. Eur J Endocrinol. 2006;155:709–15.

    Article  CAS  PubMed  Google Scholar 

  • Ulivieri FM, Silva BC, Sardanelli F, et al. Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine. 2014;47:435–48.

    Article  CAS  PubMed  Google Scholar 

  • Valassi E, Santos A, Yaneva M, et al. The European Registry on Cushing’s syndrome: 2-year experience. Baseline demographic and clinical characteristics. Eur J Endocrinol. 2011;165:383–92.

    Article  CAS  PubMed  Google Scholar 

  • Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    Article  CAS  PubMed  Google Scholar 

  • Vestergaard P, Mosekilde L. Hyperthyroidism, bone mineral, and fracture risk – a meta-analysis. Thyroid. 2003;13:585–93.

    Article  PubMed  Google Scholar 

  • Vestergaard P, Jørgensen JO, Hagen C, et al. Fracture risk is increased in patients with GH deficiency or untreated prolactinomas – a case-control study. Clin Endocrinol. 2002a;56:159–67.

    Article  Google Scholar 

  • Vestergaard P, Lindholm J, Jørgensen JO, et al. Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur J Endocrinol. 2002b;146:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Wasnich RD. Vertebral fracture epidemiology. Bone. 1996;18:179S–83S.

    Article  CAS  PubMed  Google Scholar 

  • Wuster C, Abs R, Bengtsson BA, et al. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res. 2001;16:398–405.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13:791–801.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giustina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mazziotti, G., Doga, M., Formenti, A., Frara, S., Maffezzoni, F., Giustina, A. (2018). Neuroendocrinology of Bone Metabolism. In: Casanueva, F., Ghigo, E. (eds) Hypothalamic-Pituitary Diseases. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-44444-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44444-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44443-7

  • Online ISBN: 978-3-319-44444-4

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics