Skip to main content

Storage of Hydrophobic Polymers in Bacteria

  • Living reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

The accumulation of storage reserves is broadly spread in nature, and among the different compounds stored, carbohydrates and lipids are the most common and important. The accumulation of storage compounds in inclusion bodies is a strategy that allows the survival of microorganisms in different environments since most of these compounds act as element and/or energy sources. A variety of storage reserves is known and among lipids, polyhydroxyalkanoates (PHAs), triacylglycerols (TAGs), and wax esters (WEs) are the most important. These carbon-based internal reserves gained importance in the last years due to the possibility of using them as substitutes of materials and fuels usually obtained from mineral oil. For this reason, the knowledge about the microorganisms that store them, the metabolic routes involved on their formation, and the process conditions that allow their efficient production were subject of many scientific works and constitute the main topic of the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque MGE, Martino V, Pollet E, Avérous L, Reis MAM (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotech 151:66–76

    Google Scholar 

  • Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Steinbüchel A (2010) Physiology biochemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. In: Alvarez HM (ed) Biology of Rhodococcus, Microbiology monographs series. Springer, Heidelberg, pp 263–290

    Chapter  Google Scholar 

  • Alvarez HM, Silva RA, Herrero M, Hernández MA, Villalba MS (2012) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:69–78

    Google Scholar 

  • Alvarez HM (2016) Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie 120:28–39

    Article  CAS  PubMed  Google Scholar 

  • Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:24985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacon J, Dover LG, Hatch KA, Zhang Y, Gomes JM, Kendall S, Wernisch L, Stoker NG, Butcher PD, Besra GS, Marsh PD (2007) Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology 153:1435–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson S, Werker A, Christensson M, Welander T (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99:509–516

    Article  CAS  PubMed  Google Scholar 

  • Bergersen FJ, Peoples MB, Turner GL (1991) A role for poly-beta-hydroxybutyrate in bacteroids of soybean root nodules. Proc R Soc Lond 245:59–64

    Article  CAS  Google Scholar 

  • Berlanga M, Miñana-Galbis D, Domènech O, Guerrero R (2015) Enhanced polyhydroxyalkanoates accumulation by Halomonas spp. in artificial biofilms of alginate beads. Int Microbiol 15:191–199

    Google Scholar 

  • Brämer CO, Vandamme P, da Silva LF, Gomez JGC, Steinbüchel (2001) Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51:1709–1713

    Article  PubMed  Google Scholar 

  • Brigham CJ, Kurosawa K, Rha C, Sinskey AJ (2013) Bacterial carbon storage to value added products. J Microbial Biochem Technol S3:002:2–13

    Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri P, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  CAS  Google Scholar 

  • Carvalho G, Oehmen A, Albuquerque MGE, Reis MAM (2014) The relationship between mixed microbial culture composition and PHA production performance from fermented molasses. New Biotechnol 31:257–263

    Article  CAS  Google Scholar 

  • Chen G-Q, Hajnal I (2015) The ‘PHAome’. Trends Biotechnol 33:559–564

    Article  CAS  PubMed  Google Scholar 

  • Coats ER, Loge FJ, Smith W, Thompson DN, Wolcott MP (2007) Functional stability of a mixed microbial consortium producing PHA from waste carbon sources. Appl Biochem Biotechnol 137:909–925

    PubMed  Google Scholar 

  • Da Silva DMP, Lima F, Alves MM, Bijmans MFM, Pereira MA (2016) Valorization of lubricant-based wastewater for bacterial neutral lipids production: growth-linked biosynthesis. Water Res 101:17–24

    Article  CAS  PubMed  Google Scholar 

  • Dahlqvist A, Stähl U, Lanman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 12:6487–6492

    Article  Google Scholar 

  • Daigger GT, Grady CPL (1982) An assessment of the role of physiological adaptation in the transient-response of bacterial cultures. Biotechnol Bioeng 24:1427–1444

    Article  CAS  PubMed  Google Scholar 

  • Dionisi D, Majone M, Papa V, Beccari M (2004) Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng 85:569–579

    Article  CAS  PubMed  Google Scholar 

  • Dionisi D, Carucci G, Petrangeli Papini M, Riccardi C, Majone M, Carrasco F (2005) Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res 39:2076–2084

    Article  CAS  PubMed  Google Scholar 

  • Revellame ED, Hernandez R, French WT, Holmes WE, Forks A, Callahan R II (2013) Lipid-enhancement of activated sludges obtained from conventional activated sludge and oxidation ditch processes. Bioresour Technol 148:487–493

    Article  CAS  PubMed  Google Scholar 

  • Encarnación S, Vargas MC, Dunn MF, Davalos A, Mendoza G, Mora Y, Mora J (2002) AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. J Bacteriol 184:2287–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freches A, Lemos PC (2017) Microbial selection strategies for polyhydroxyalkanoates production from crude glycerol: effect of OLR and cycle length. New Biotechnol 39:22–28

    Article  CAS  Google Scholar 

  • Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2017) Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 101:2203–2216

    Article  CAS  PubMed  Google Scholar 

  • Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2015) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol 99:2191–2207

    Article  CAS  PubMed  Google Scholar 

  • Holdren JP (2011) Materials genome initiative for global competitiveness. National Science and Technology Council OSTP, Washington, DC

    Google Scholar 

  • Ishige T, Tani A, Sakai Y, Kato N (2003) Wax ester production by bacteria. Curr Opin Microbiol 6:244–250

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Marang L, Tamis J, van Loosdrecht MCM, Dijkman H, Kleerebezem R (2012) Waste to resource: converting paper mill wastewater to bioplastic. Water Res 46:5517–5530

    Article  CAS  PubMed  Google Scholar 

  • Kaddor C, Biermann K, Kalscheuer R, Steinbüchel A (2009) Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein. Appl Microbiol Biotechnol 84:143–155

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  CAS  PubMed  Google Scholar 

  • Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Gasser I, Schimd F, Berg G (2011) Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237

    Article  CAS  Google Scholar 

  • Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55

    Article  PubMed Central  Google Scholar 

  • Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosawa K, Wewetzer SJ, Sinskey AJ (2014) Triacylglycerol production from corn Stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels. J Microbial Biochem Technol 6:254–259

    Article  CAS  Google Scholar 

  • Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583

    Article  CAS  Google Scholar 

  • Li S, Cai L, Wu L, Zeng G, Chen J, Wu Q, Chen C-Q (2014) Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules 15:2310–2319

    Article  CAS  PubMed  Google Scholar 

  • López NI, Pettinari MJ, Nikel PI, Méndez BS (2015) Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Biotechnol 93:73–106

    Google Scholar 

  • Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass Bioenergy 74:268–279

    Article  CAS  Google Scholar 

  • Majone M, Massanisso P, Carucci A, Lindrea K, Tandoi V (1996) Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Sci Technol 34(223–2):32

    Google Scholar 

  • Mohd MF, Mohanadoss P, Ujang Z, van Loosdrecht M, Yunus SM, Chelliapan S, Zambare V, Olsson G (2012) Development of Bio-PORec system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME). Bioresour Technol 124:208–216

    Article  CAS  Google Scholar 

  • Moita R, Lemos PC (2012) Biopolymers production from mixed cultures and pyrolysis by-products. J Biotechnol 157:578–583

    Article  CAS  PubMed  Google Scholar 

  • Moita R, Freches A, Lemos PC (2014) Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res 58:9–20

    Article  CAS  PubMed  Google Scholar 

  • Mozejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282

    Article  CAS  PubMed  Google Scholar 

  • Mukai K, Yamada K, Doi Y (1994) Efficient hydrolysis of polyhydroxyalkanoates by Pseudomonas stutzeri YM1414 isolated from lake water. Polym Degrad Stab 43:319–327

    Article  CAS  Google Scholar 

  • Muller EEL, Sheik AR, Wilmes P (2014) Lipid-based biofuel production from wastewater. Curr Opin Biotechnol 30:9–16

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res 32:247–280

    Article  CAS  PubMed  Google Scholar 

  • Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36:856 (in press)

    Article  CAS  PubMed  Google Scholar 

  • Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, Reis MAM (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300

    Article  CAS  PubMed  Google Scholar 

  • Pereira H, Lemos PC, Reis MAM, Crespo JPSG, Carrondo MJT, Santos H (1996) Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labelling experiments. Water Res 30:2128–2138

    Article  CAS  Google Scholar 

  • Pisco AR, Bengtsson S, Werker A, Reis MAM, Lemos PC (2009) Community structure evolution and enrichment of glycogen-accumulating organisms producing polyhydroxyalkanoates from fermented molasses. Appl Environ Microbiol 75:4676–4686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qadeer S, Khalid A, Mahmood S, Anjum M, Ahmad Z (2017) Utilizing oleaginous bacteria and fungi for cleaner energy production. J Clean Prod 168:917–928

    Article  CAS  Google Scholar 

  • Queirós D, Rossetti S, Serafim LS (2014) PHA production by mixed cultures: a way to valorize wastes from pulp industry. Bioresour Technol 157:197–205

    Article  CAS  PubMed  Google Scholar 

  • Queirós D, Lemos PC, Rossetti S, Serafim LS (2015) Unveiling PHA-storing populations using molecular methods. Appl Microbiol Biotechnol 99:10433–10446

    Article  CAS  PubMed  Google Scholar 

  • Quillaguamán J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly(b-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157

    Article  CAS  PubMed  Google Scholar 

  • Quillaguamán J, Guzmán H, Doan Van T, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Rae BD, Long BM, Murray RB, Price GD (2013) Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77:357–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm B (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self-assembly: the key role of polyester synthases. Biotechnol Lett 28:207–213

    Article  CAS  PubMed  Google Scholar 

  • Reis M, Albuquerque M, Villano M, Majone M (2011) Mixed culture processes for polyhydroxyalkanoate production from agro-industrial surplus/wastes as feedstocks. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic, Burlington, pp 669–683

    Chapter  Google Scholar 

  • Rontani J-F (2010) Production of wax esters by bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 459–470

    Chapter  Google Scholar 

  • Rothermich MM, Guerrero R, Lenz RW, Goodwin S (2000) Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol 66:4279–4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röttig A, Steinbüchel A (2013) Acyltransferases in bacteria. Microbiol Mol Biol Rev 77:277–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röttig A, Zurek PJ, Steinbüchel A (2015) Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng 32:195–206

    Article  CAS  PubMed  Google Scholar 

  • Samori C, Abbondanzi F, Galletti P, Giorgini L, Mazzocchetti L, Torri C, Tagliavini E (2015) Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresour Technol 189:195–202

    Article  CAS  PubMed  Google Scholar 

  • Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, Santala V (2011) Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Factories 10:36

    Article  CAS  Google Scholar 

  • Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008a) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628

    Article  CAS  PubMed  Google Scholar 

  • Serafim LS, Lemos PC, Torres C, Reis MAM, Ramos AM (2008b) The influence of process parameters on the characteristics of polyhydroxyalkanoates produced by mixed cultures. Macromol Biosci 8:355–366

    Article  CAS  PubMed  Google Scholar 

  • Serafim LS, Queirós D, Rossetti S, Lemos PC (2016) Biopolymer production by mixed-microbial cultures: integrating remediation with valorization. In: Koller M (ed) Recent advances in biotechnology – volume 1 – microbial polyester production, performance and processing – microbiology, feedstocks, and metabolism, 1st edn. Bentham Science Publishers, Sharjah, pp 226–264

    Google Scholar 

  • Shively JM (1974) Inclusion bodies of prokaryotes. Annu Rev Microbiol 28:167–188

    Article  CAS  PubMed  Google Scholar 

  • Shively JM, Cannon GC, Heinhorst S, Bryant DA, DasSarma S, Bazylinski D, Preiss J, Steinbüchel A, Docampo R, Dahl C (2011) Bacterial and archaeal inclusions. In: eLS. Wiley, Chichester, pp 1–14

    Google Scholar 

  • Sirakova TD, Deb C, Daniel J, Singh HD, Maamar H, Dubey VS, Kolattukudy PE (2012) Wax ester synthesis is required for Mycobacterium tuberculosis to enter in vitro dormancy. PLoS One 7:e51641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slepecky RA, Law JH (1961) Synthesis and degradation of poly-beta-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J Bacteriol 82:37–42

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song JH, Jeon CO, Choi MH, Yoon SC, Park W (2008) Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol 18:1408–1415

    PubMed  CAS  Google Scholar 

  • Steinbüchel A, Pieper U (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from single unrelated carbon sources by a mutant of Alcaligenes eutrophus. Appl Microbiol Biotechnol 37:1–6

    Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123

    PubMed  Google Scholar 

  • Tamis J, Sorokin DY, Jiang Y, van Loosdrecht MCM, Kleerebezem R (2015) Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures. Biotechnol Biofuels 8:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan G-Y, Chen C-L, Li L, Ge L, Wang L, Razaad I, Li Y, Zhao L, Mo Y, Wang J-Y (2014) Start a research on biopolymer Polyhydroxyalkanoate (PHA): a review. Polymers (Basel) 6:706–754

    Article  CAS  Google Scholar 

  • Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(D-3-hydroxybutyrate) from CO2, H2, and CO by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H (2011) Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbiol Biotechnol 92:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99:6231–6240

    Article  CAS  PubMed  Google Scholar 

  • Urmeneta J, Mas-Castella J, Guerrero R (1995) Biodegradation of poly-b-hydroxyalkanoates in a lake sediment sample increases bacterial sulfate reduction. Appl Environ Microbiol 61:2046–2048

    PubMed  PubMed Central  CAS  Google Scholar 

  • Villanueva L, Del Campo J, Guerrero R (2010) Diversity and physiology of polyhydroxyalkanoate-producing and -degrading strains in microbial mats. FEMS Microbiol Ecol 74:42–54

    Article  CAS  PubMed  Google Scholar 

  • Volova TG (2004) Polyhydroxyalkanoates – plastic materials of the 21st century: production, properties, applications. Nova Science Publishers, Inc., New York

    Google Scholar 

  • Wallen LL, Rohwedder WK (1974) Poly-b-hydroxyalkanoate from activated sludge. Environ Sci Technol 8:576–579

    Article  CAS  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla H-J, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55(3):750–763

    Article  CAS  PubMed  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wältermann M, Stoveken T, Steinbuchel A (2007) Enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie 89:230–242

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yin J, Chen CQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  • Willis RM, Wahlen BD, Seefeldt LC, Barney BM (2011) Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol. Biochemistry 50:10550–10558

    Article  CAS  PubMed  Google Scholar 

  • Wintermute EH, Silver PA (2010) Dynamics in the mixed microbial concourse. Genes Dev 24:2603–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by Fundação para a Ciência e a Tecnologia through IF/01054/2014. This work was also developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work was also supported by the Associate Laboratory for Green Chemistry- LAQV which is financed by national funds from FCT/MCTES (UID/QUI/50006/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER – 007265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luísa S. Serafim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Serafim, L.S., Xavier, A.M.R.B., Lemos, P.C. (2018). Storage of Hydrophobic Polymers in Bacteria. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics