Skip to main content

Application of Nanofibers in Ophthalmic Tissue Engineering

Handbook of Nanofibers

Abstract

This chapter describes recently designed and developed nanofiber scaffolds used for ophthalmic tissue engineering applications. In recent decades, ophthalmic diseases have been a significant health concern throughout the world, and the prevalence is likely to increase, especially in developing countries. Many types of research have focused on ophthalmic disease remedies, as well as corneal transplantation, retinal detachment, and preparation of an appropriate system for regeneration of the cornea and retina by use of scaffolds. Therefore, a necessary property for scaffold materials—in addition to biocompatibility, mechanical strength, and permeability to glucose and other nutrients—is the ability to encourage cell adhesion, which could allow artificial scaffolds to be fixed in place. However, the topography of materials has an significant effect on their applications, particularly in ophthalmic tissue engineering. Recently, nanofibers have attracted attention because of their unique properties for preparation of biodegradable and nonbiodegradable scaffolds. Electrospinning is a method used to produce biocompatible scaffolds from nanofibers for the purpose of tissue regeneration. Nanofibers can produce three-dimensional scaffolds for various purposes in ophthalmic applications such as corneal transplantation and retinal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sommer F, Brandl F, Göpferich A (2006) Ocular tissue engineering. In: Fisher JP (ed) Tissue engineering. Springer, New York, pp 413–429

    Google Scholar 

  2. Karamichos D (2015) Ocular tissue engineering: current and future directions. J Funct Biomater 6:77–80

    Article  CAS  Google Scholar 

  3. Akter F (2016) Chapter 5—Ophthalmic tissue engineering. In: Tissue engineering made easy. Academic, Cambridge, pp 43–54

    Chapter  Google Scholar 

  4. Black CRM, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo ROC (2015) Bone tissue engineering. Curr Mol Biol Rep 1:132–140. https://doi.org/10.1007/s40610-015-0022-2

    Article  Google Scholar 

  5. Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293–347

    Article  CAS  Google Scholar 

  6. Bhardwaj N, Chouhan D, Mandal BB (2018) 3D functional scaffolds for skin tissue engineering. In: Deng Y, Kuiper J (eds) Functional 3D tissue engineering scaffolds. Woodhead, Waltham, pp 345–365

    Chapter  Google Scholar 

  7. Martins A, Reis RL, Neves NM (2018) Micro/nano scaffolds for osteochondral tissue engineering. In: Oliveira JM, Pina S, Reis RL, Roman JS (eds) Osteochondral tissue engineering: nanotechnology, scaffolding-related developments and translation. Springer, Cham, pp 125–139

    Chapter  Google Scholar 

  8. Myung D, Duhamel PE, Cochran JR, Noolandi J, Ta CN, Frank CW (2008) Development of hydrogel-based keratoprostheses: a materials perspective. Biotechnol Prog 24:735–741

    Article  CAS  Google Scholar 

  9. Jiang H, Zuo Y, Zhang L, Li J, Zhang A, Li Y, Yang X (2014) Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea. J Mater Sci Mater Med 25:941–952

    Article  CAS  Google Scholar 

  10. Lee H, Kharaghani D, Kim IS (2018) Mechanical force for fabricating nanofiber. In: Lin T (ed) Novel aspects of nanofibers. InTechOpen, Rijeka. https://doi.org/10.5772/intechopen.73521

    Chapter  Google Scholar 

  11. Chirila TV et al (1998) Artificial cornea. Prog Polym Sci 23:447–473

    Article  CAS  Google Scholar 

  12. Hao J, Li SK, Kao WW, Liu C-Y (2010) Gene delivery to cornea. Brain Res Bull 81:256–261

    Article  CAS  Google Scholar 

  13. Milan Eye Center (2016) Cornea center. https://www.milaneyecenter.com/cornea-center/

  14. Pino M, Stingelin N, Tanner K (2008) Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomater 4:1827–1836

    Article  CAS  Google Scholar 

  15. Legeais J-M, Renard G (1998) A second generation of artificial cornea (Biokpro II). Biomaterials 19:1517–1522

    Article  CAS  Google Scholar 

  16. Sharma S, Mohanty S, Gupta D, Jassal M, Agrawal AK, Tandon R (2011) Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol Vis 17:2898

    CAS  Google Scholar 

  17. Sharma S, Gupta D, Mohanty S, Jassal M, Agrawal AK, Tandon R (2014) Surface-modified electrospun poly(ε-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction. Invest Ophthalmol Vis Sci 55:899–907

    Article  CAS  Google Scholar 

  18. Azari P, Luan NS, Gan SN, Yahya R, Wong CS, Chua KH, Pingguan-Murphy B (2015) Electrospun biopolyesters as drug screening platforms for corneal keratocytes. Int J Polym Mater Polym Biomater 64:785–791

    Article  CAS  Google Scholar 

  19. Bakhshandeh H et al (2011) Poly(É›-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea. Int J Nanomed 6:1509

    CAS  Google Scholar 

  20. Wilson SL, Wimpenny I, Ahearne M, Rauz S, El Haj AJ, Yang Y (2012) Chemical and topographical effects on cell differentiation and matrix elasticity in a corneal stromal layer model. Adv Funct Mater 22:3641–3649

    Article  CAS  Google Scholar 

  21. Ortega Í, Ryan AJ, Deshpande P, MacNeil S, Claeyssens F (2013) Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater 9:5511–5520

    Article  CAS  Google Scholar 

  22. Wu J, Du Y, Watkins SC, Funderburgh JL, Wagner WR (2012) The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Biomaterials 33:1343–1352

    Article  CAS  Google Scholar 

  23. Acun A, Hasirci V (2014) Construction of a collagen-based, split-thickness cornea substitute. J Biomater Sci Polym Ed 25:1110–1132

    Article  CAS  Google Scholar 

  24. Phu D, Wray LS, Warren RV, Haskell RC, Orwin EJ (2010) Effect of substrate composition and alignment on corneal cell phenotype. Tissue Eng A 17:799–807

    Article  Google Scholar 

  25. Wray LS, Orwin EJ (2009) Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Eng A 15:1463–1472

    Article  CAS  Google Scholar 

  26. Biazar E, Baradaran-Rafii A, Heidari-keshel S, Tavakolifard S (2015) Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J Biomater Sci Polym Ed 26:1139–1151

    Article  CAS  Google Scholar 

  27. Tonsomboon K, Oyen ML (2013) Composite electrospun gelatin fiber–alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater 21:185–194

    Article  CAS  Google Scholar 

  28. Baradaran-Rafii A, Biazar E, Heidari-Keshel S (2015) Cellular response of limbal stem cells on PHBV/gelatin nanofibrous scaffold for ocular epithelial regeneration. Int J Polym Mater Polym Biomater 64:879–887

    Article  CAS  Google Scholar 

  29. Salehi S, Bahners T, Gutmann J, Gao S-L, Mäder E, Fuchsluger T (2014) Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. RSC Adv 4:16951–16957

    Article  CAS  Google Scholar 

  30. Ye J et al (2014) Chitosan-modified, collagen-based biomimetic nanofibrous membranes as selective cell adhering wound dressings in the treatment of chemically burned corneas. J Mater Chem B 2:4226–4236

    Article  CAS  Google Scholar 

  31. Yan J et al (2012) Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. J Biomed Mater Res A 100:527–535

    Article  Google Scholar 

  32. Zhang C, Wen J, Yan J, Kao Y, Ni Z, Cui X, Wang H (2015) In situ growth induction of the corneal stroma cells using uniaxially aligned composite fibrous scaffolds. RSC Adv 5:12123–12130

    Article  CAS  Google Scholar 

  33. Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218

    Article  Google Scholar 

  34. Kharaghani D, Meskinfam M, Rezaeikanavi M, Balagholi S, Fazili N (2015) Synthesis and characterization of hybrid nanocomposite via biomimetic method as an artificial cornea. Invest Ophthalmol Vis Sci 56:5024–5024

    Google Scholar 

  35. Wu Z, Kong B, Liu R, Sun W, Mi S (2018) Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials 8:124

    Article  Google Scholar 

  36. Liu K, Li Y, Xu F, Zuo Y, Zhang L, Wang H, Liao J (2009) Graphite/poly (vinyl alcohol) hydrogel composite as porous ringy skirt for artificial cornea. Mater Sci Eng C 29:261–266

    Article  Google Scholar 

  37. Hildebrand GD, Fielder AR (2011) Anatomy and physiology of the retina. In: Reynolds JD, Olitsky SE (eds) Pediatric retina. Springer, Heidelberg, pp 39–65

    Chapter  Google Scholar 

  38. Banerjee S (2006) A review of developments in the management of retinal diseases. J R Soc Med 99:125–127

    Article  Google Scholar 

  39. Ramsden CM, Powner MB, Carr A-JF, Smart MJ, da Cruz L, Coffey PJ (2013) Stem cells in retinal regeneration: past, present and future. Development 140:2576–2585

    Article  CAS  Google Scholar 

  40. Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DH, Lako M (2017) 3D culture of human pluripotent stem cells in RGD–alginate hydrogel improves retinal tissue development. Acta Biomater 49:329–343

    Article  CAS  Google Scholar 

  41. Oswald J, Baranov P (2018) Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol 10:2515841418774433

    Google Scholar 

  42. Redenti S et al (2008) Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J Ocul Biol Dis Infor 1:19–29

    Article  Google Scholar 

  43. Komez A, Baran ET, Erdem U, Hasirci N, Hasirci V (2016) Construction of a patterned hydrogel–fibrous mat bilayer structure to mimic choroid and Bruch’s membrane layers of retina. J Biomed Mater Res A 104:2166–2177

    Article  CAS  Google Scholar 

  44. Xiang P, Wu KC, Zhu Y, Xiang L, Li C, Chen DL, Chen F, Xu G, Wang A, Li M, Jin ZB (2014) A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 35(37):9777–9788

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick Soo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kharaghani, D., Qamar Khan, M., Soo Kim, I. (2019). Application of Nanofibers in Ophthalmic Tissue Engineering. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Application of Nanofibers in Ophthalmic Tissue Engineering
    Published:
    09 February 2019

    DOI: https://doi.org/10.1007/978-3-319-42789-8_56-2

  2. Original

    Application of Nanofibers in Ophthalmic Tissue Engineering
    Published:
    27 October 2018

    DOI: https://doi.org/10.1007/978-3-319-42789-8_56-1