Skip to main content

Characterization and Evaluation of Nanofiber Materials

  • Living reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Characterization of nanofiber is performed to correlate test metrics with the practical characteristics of the material and to ensure reliable high quality of the products during production. The aim of single-fiber measurement procedure is to find fundamental information to better understand the relationship between the structure and the features of nanofibers. Theoretically, several characterization techniques have been utilized with nanofibers. Nevertheless, it must be borne in mind that morphology, molecular structure and mechanical properties are the most critical features of nanofibers. Therefore, in this chapter, it is attempted to explain briefly the nanofiber characterization techniques by focusing on the morphological and mechanical properties of nanofibers to provide fundamental data for evaluation of nanofiber materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22. https://doi.org/10.1016/j.carbon.2008.09.039

    Article  Google Scholar 

  2. Arinstein A, Burman M, Gendelman O, Zussman E (2007) Effect of supramolecular structure on polymer nanofibre elasticity. Nat Nanotechnol 2:59–62. https://doi.org/10.1038/nnano.2006.172

    Article  Google Scholar 

  3. Balzer F, Bordo VG, Simonsen AC, Rubahn H-G (2003) Isolated hexaphenyl nanofibers as optical waveguides. Appl Phys Lett 82:10–12. https://doi.org/10.1063/1.1533845

    Article  Google Scholar 

  4. Bellan LM, Coates GW, Craighead HG (2006) Poly(dicyclopentadiene) submicron fibers produced by electrospinning. Macromol Rapid Commun 27:511–515. https://doi.org/10.1002/marc.200500823

    Article  Google Scholar 

  5. Bellan LM, Kameoka J, Craighead HG (2005) Measurement of the Young’s moduli of individual polyethylene oxide and glass nanofibres. Nanotechnology 16:1095–1099. https://doi.org/10.1088/0957-4484/16/8/017

    Article  Google Scholar 

  6. Bhowmick S, Fowler A, Warner SB, Meressi T, Gibson P (2007) Transport in 3-D nanofab geometries. National Textile Center Annual Reports, NTC Project F06-MD04

    Google Scholar 

  7. Birdi KSS (2003) Scanning probe microscopes: applications in science and technology. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72. https://doi.org/10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H

    Article  Google Scholar 

  9. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci A: Pure Appl Chem 38:1231–1243

    Article  Google Scholar 

  10. Buell S, Van Vliet KJ, Rutledge GC (2009) Mechanical properties of glassy polyethylene nanofibers via molecular dynamics simulations. Macromolecules 42:4887–4895. https://doi.org/10.1021/ma900250y

    Article  Google Scholar 

  11. Buer A, Ugbolue SC, Warner SB (2001) Electrospinning and properties of some nanofibers. Text Res J 71:323–328. https://doi.org/10.1177/004051750107100408

    Article  Google Scholar 

  12. Chahal S, Hussain FSJ, Yusoff MBM (2013) Characterization of modified cellulose (MC)/poly (vinyl alcohol) electrospun nanofibers for bone tissue engineering. Proc Eng 53:683–688. https://doi.org/10.1016/j.proeng.2013.02.088

    Article  Google Scholar 

  13. Chekanov Y, Ohnogi R, Asai S, Sumita M (1999) Electrical properties of epoxy resin filled with carbon fibers. J Mater Sci 34:5589–5592

    Article  Google Scholar 

  14. Chen K, Shen Z, Luo J, Wang X, Sun R (2015) Quaternized chitosan/silver nanoparticles composite as a SERS substrate for detecting tricyclazole and Sudan I. Appl Surf Sci 351:466–473. https://doi.org/10.1016/j.apsusc.2015.05.149

    Article  Google Scholar 

  15. Chipara DM, Macossay J, Ybarra AVR, Chipara AC, Eubanks TM, Chipara M (2013) Raman spectroscopy of polystyrene nanofibers – multiwalled carbon nanotubes composites. Appl Surf Sci 275:23–27. https://doi.org/10.1016/j.apsusc.2013.01.116

    Article  Google Scholar 

  16. Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410. https://doi.org/10.1103/PhysRevB.69.165410

    Article  Google Scholar 

  17. Demczyk B, Wang Y, Cumings J, Hetman M, Han W, Zettl A, Ritchie R (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A 334:173–178. https://doi.org/10.1016/S0921-5093(01)01807-X

    Article  Google Scholar 

  18. Demir M, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43:3303–3309. https://doi.org/10.1016/S0032-3861(02)00136-2

    Article  Google Scholar 

  19. Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003) Electrospun nanofibers: internal structure and intrinsic orientation. J Polym Sci A Polym Chem 41:545–553. https://doi.org/10.1002/pola.10609

    Article  Google Scholar 

  20. Ding B, Fujimoto K, Shiratori S (2005) Preparation and characterization of self-assembled polyelectrolyte multilayered films on electrospun nanofibers. Thin Solid Films 491:23–28. https://doi.org/10.1016/j.tsf.2005.02.009

    Article  Google Scholar 

  21. Ding B, Kim J, Miyazaki Y, Shiratori S (2004) Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensors Actuators B Chem 101:373–380. https://doi.org/10.1016/j.snb.2004.04.008

    Article  Google Scholar 

  22. Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902. https://doi.org/10.1016/j.polymer.2004.01.026

    Article  Google Scholar 

  23. Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022. https://doi.org/10.1016/j.eurpolymj.2006.04.021

    Article  Google Scholar 

  24. Esnaashari SS, Rezaei S, Mirzaei E, Afshari H, Rezayat SM, Faridi-Majidi R (2014) Preparation and characterization of kefiran electrospun nanofibers. Int J Biol Macromol 70:50–56. https://doi.org/10.1016/j.ijbiomac.2014.06.014

    Article  Google Scholar 

  25. Gao Y, Yang Z, Kuang Y, Ma M-L, Li J, Zhao F, Xu B (2010) Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers 94:19–31. https://doi.org/10.1002/bip.21321

    Article  Google Scholar 

  26. Gebeyehu MB, Chang Y-H, Abay AK, Chang S-Y, Lee J-Y, Wu C-M, Chiang T-C, Murakami R-I (2016) Fabrication and characterization of continuous silver nanofiber/polyvinylpyrrolidone (AgNF/PVP) core–shell nanofibers using the coaxial electrospinning process. RSC Adv 6:54162–54168. https://doi.org/10.1039/C6RA05869H

    Article  Google Scholar 

  27. Goldman A (1999) Handbook of modern ferromagnetic materials. Springer Science & Business Media. The Springer International Series in Engineering and Computer Science, Series Volume 505, Springer US, Boston, MA, https://doi.org/10.1007/978-1-4615-4917-8

  28. Greiner A, Wendorff JH, Yarin AL, Zussman E (2006) Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol 71:387–393. https://doi.org/10.1007/s00253-006-0356-z

    Article  Google Scholar 

  29. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198

    Article  Google Scholar 

  30. Gu S-Y, Ren J (2005) Process optimization and empirical modeling for electrospun poly(D,L-lactide) fibers using response surface methodology. Macromol Mater Eng 290:1097–1105. https://doi.org/10.1002/mame.200500215

    Article  Google Scholar 

  31. Gu S-Y, Wu Q-L, Ren J, Vancso GJ (2005) Mechanical properties of a single electrospun fiber and its structures. Macromol Rapid Commun 26:716–720. https://doi.org/10.1002/marc.200400667

    Article  Google Scholar 

  32. Guerrini LM, Branciforti MC, Canova T, Suman Bretas RE (2009) Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights. Mater Res 12:181–190

    Article  Google Scholar 

  33. Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R, Mohamed Kamari H, Sarami N (2014) Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram Int 40:5881–5887. https://doi.org/10.1016/j.ceramint.2013.11.032

    Article  Google Scholar 

  34. Hajalilou A, Hashim M, Ebrahimi-Kahrizsangi R, Sarami N (2015) Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J Phys D Appl Phys 48:145001

    Article  Google Scholar 

  35. Hajalilou A, Kamari HM, Shameli K (2017) Dielectric and electrical characteristics of mechanically synthesized Ni–Zn ferrite nanoparticles. J Alloys Compd 708:813–826. https://doi.org/10.1016/j.jallcom.2017.03.030

    Article  Google Scholar 

  36. Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973. https://doi.org/10.1021/cm0484955

    Article  Google Scholar 

  37. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  Google Scholar 

  38. Hugel T (2002) Single-molecule optomechanical cycle. Science 296:1103–1106. https://doi.org/10.1126/science.1069856

    Article  Google Scholar 

  39. Inai R, Kotaki M, Ramakrishna S (2005) Deformation behavior of electrospun poly(L-lactide-co-ɛ-caprolactone) nonwoven membranes under uniaxial tensile loading. J Polym Sci B Polym Phys 43:3205–3212. https://doi.org/10.1002/polb.20457

    Article  Google Scholar 

  40. Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16:208–213. https://doi.org/10.1088/0957-4484/16/2/005

    Article  Google Scholar 

  41. Jalili R, Morshed M, Ravandi SAH (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101:4350–4357. https://doi.org/10.1002/app.24290

    Article  Google Scholar 

  42. Jena AK, Gupta KM (1999) In-plane compression porometry of battery separators. J Power Sources 80:46–52. https://doi.org/10.1016/S0378-7753(99)00163-9

    Article  Google Scholar 

  43. Ji Y, Li B, Ge S, Sokolov JC, Rafailovich MH (2006) Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22:1321–1328. https://doi.org/10.1021/la0525022

    Article  Google Scholar 

  44. Jia Y, Huang G, Dong F, Liu Q, Nie W (2016) Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polym Compos 37:2847–2854. https://doi.org/10.1002/pc.23481

    Article  Google Scholar 

  45. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  Google Scholar 

  46. Kim C, Park S-H, Cho J-I, Lee D-Y, Park T-J, Lee W-J, Yang K-S (2004) Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J Raman Spectrosc 35:928–933. https://doi.org/10.1002/jrs.1233

    Article  Google Scholar 

  47. Kim HS, Jin H-J, Myung SJ, Kang M, Chin I-J (2006) Carbon nanotube-adsorbed electrospun nanofibrous membranes of nylon 6. Macromol Rapid Commun 27:146–151. https://doi.org/10.1002/marc.200500617

    Article  Google Scholar 

  48. Kim J-S, Lee DS (2000) Thermal properties of electrospun polyesters. Polym J 32:616–618. https://doi.org/10.1295/polymj.32.616

    Article  Google Scholar 

  49. Kim J-S, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci 39:849–854. https://doi.org/10.1002/pen.11473

    Article  Google Scholar 

  50. Kitazawa M, Ohta R, Tanaka J, Tanemura M (2007) Electrical properties of single carbon nanofibers grown on tips of scanning probe microscope cantilevers by ion irradiation. Jpn J Appl Phys 46:5607–5610. https://doi.org/10.1143/JJAP.46.5607

    Article  Google Scholar 

  51. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165. https://doi.org/10.1002/adma.200304955

    Article  Google Scholar 

  52. Lee IW, Li J, Chen X, Park HJ (2016) Electrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium D-pantothenate. J Appl Polym Sci 133. doi:https://doi.org/10.1002/app.42900

  53. Lee S-H, Tekmen C, Sigmund WM (2005) Three-point bending of electrospun TiO2 nanofibers. Mater Sci Eng A 398:77–81. https://doi.org/10.1016/j.msea.2005.03.014

    Article  Google Scholar 

  54. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008. https://doi.org/10.1016/j.biomaterials.2005.03.030

    Article  Google Scholar 

  55. Li Q, Liu C, Wang X, Fan S (2009) Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology 20:145702. https://doi.org/10.1088/0957-4484/20/14/145702

    Article  Google Scholar 

  56. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621. https://doi.org/10.1002/jbm.10167

    Article  Google Scholar 

  57. Lin S, Cai Q, Ji J, Sui G, Yu Y, Yang X, Ma Q, Wei Y, Deng X (2008) Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation. Compos Sci Technol 68:3322–3329. https://doi.org/10.1016/j.compscitech.2008.08.033

    Article  Google Scholar 

  58. Liu W, Wu Z, Reneker DH (2000) Structure and morphology of poly(metaphenylene isophthalamide) nanofibers produced by electrospinning. Polym Prepr 41:1193–1194

    Google Scholar 

  59. Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H (2007) Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules 40:6283–6290. https://doi.org/10.1021/ma070039p

    Article  Google Scholar 

  60. Lu R, Chang K, Fu B, Shen Y, Xu M, Yang S, Song X, Liu M (2014) Magnetic properties of different CoFe2O4 nanostructures: nanofibers versus nanoparticles. J Mater Chem C 2:8578–8584

    Article  Google Scholar 

  61. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Release 89:341–353. https://doi.org/10.1016/S0168-3659(03)00097-X

    Article  Google Scholar 

  62. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101–109. https://doi.org/10.1089/ten.2005.11.101

    Article  Google Scholar 

  63. Marcos M, Cano P, Fantazzini P, Garavaglia C, Gomez S, Garrido L (2006) NMR relaxometry and imaging of water absorbed in biodegradable polymer scaffolds. Magn Reson Imaging 24:89–95. https://doi.org/10.1016/j.mri.2005.10.008

    Article  Google Scholar 

  64. Mathew G, Hong JP, Rhee JM, Lee HS, Nah C (2005) Preparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes. Polym Test 24:712–717. https://doi.org/10.1016/j.polymertesting.2005.05.002

    Article  Google Scholar 

  65. McKee MG, Park T, Unal S, Yilgor I, Long TE (2005) Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer 46:2011–2015. https://doi.org/10.1016/j.polymer.2005.01.028

    Article  Google Scholar 

  66. McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2006) Mechanical properties of electrospun fibrinogen structures. Acta Biomater 2:19–28. https://doi.org/10.1016/j.actbio.2005.09.008

    Article  Google Scholar 

  67. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147. https://doi.org/10.1088/0957-4484/11/3/301

    Article  Google Scholar 

  68. Morozov V, Morozova T, Kallenbach N (1998) Atomic force microscopy of structures produced by electrospraying polymer solutions. Int J Mass Spectrom 178:143–159. https://doi.org/10.1016/S1387-3806(98)14083-6

    Article  Google Scholar 

  69. Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES (2013) Structural and morphological characterization of micro and nanofibers produced by electrospinning and solution blow spinning: a comparative study. Adv Mater Sci Eng 1–14. doi:https://doi.org/10.1155/2013/409572

  70. Paiva-Santos CO, Gouveia H, Las WC, Varela JA (1999) Gauss-Lorentz size-strain broadening and cell parameters analysis of Mn doped SnO2 prepared by organic route. Mater Struct 6:111–115

    Google Scholar 

  71. Patel AC, Li S, Yuan J-M, Wei Y (2006) In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett 6:1042–1046. https://doi.org/10.1021/nl0604560

    Article  Google Scholar 

  72. Pedicini A, Farris RJ (2003) Mechanical behavior of electrospun polyurethane. Polymer 44:6857–6862. https://doi.org/10.1016/j.polymer.2003.08.040

    Article  Google Scholar 

  73. Pirlot C, Mekhalif Z, Fonseca A, Nagy JB, Demortier G, Delhalle J (2003) Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams. Chem Phys Lett 372:595–602. https://doi.org/10.1016/S0009-2614(03)00464-0

    Article  Google Scholar 

  74. Ren S, Dong L, Zhang X, Lei T, Ehrenhauser F, Song K, Li M, Sun X, Wu Q (2017) Electrospun nanofibers made of silver nanoparticles, cellulose nanocrystals, and polyacrylonitrile as substrates for surface-enhanced Raman scattering. Materials 10:68. https://doi.org/10.3390/ma10010068

    Article  Google Scholar 

  75. Richard-Lacroix M, Pellerin C (2012) Orientation and structure of single electrospun nanofibers of poly(ethylene terephthalate) by confocal Raman spectroscopy. Macromolecules 45:1946–1953. https://doi.org/10.1021/ma202749d

    Article  Google Scholar 

  76. Roodbar Shojaei T, Mohd Salleh MA, Sijam K, Abdul Rahim R, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Fluorometric immunoassay for detecting the plant virus citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183:2277–2287. https://doi.org/10.1007/s00604-016-1867-7

    Article  Google Scholar 

  77. Roodbar Shojaei T, Mohd Salleh MA, Sijam K, Abdul Rahim R, Mohsenifar A, Safarnejad R, Tabatabaei M (2016) Detection of citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim Acta A Mol Biomol Spectrosc 169:216–222. https://doi.org/10.1016/j.saa.2016.06.052

    Article  Google Scholar 

  78. Roodbar Shojaei T, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, Hajalilou A, Jorfi R (2014) Development of sandwich-form biosensor to detect mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis 18:600–608. https://doi.org/10.1016/j.bjid.2014.05.015

    Article  Google Scholar 

  79. Sasipriya K, Suriyaprabha R, Prabu P, Rajendran V (2013) Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up. Mater Res 16:824–830. https://doi.org/10.1590/S1516-14392013005000050

    Article  Google Scholar 

  80. Schreuder-Gibson H, Gibson P (2006) Applications of electrospun nanofibers in current and future materials. In: Reneker DH, Fong H (eds) Polymer nanofibers. ACS Symposium Series, Vol. 918, American Chemical Society Publication, Washington D.C, USA, page 121–136 https://doi.org/10.1021/bk-2006-0918.ch009

  81. Seah MP (1999) Quantitative AES and XPS: convergence between theory and experimental databases. J Electron Spectrosc Relat Phenom 100:55–73. https://doi.org/10.1016/S0368-2048(99)00040-7

    Article  Google Scholar 

  82. Shin MK, Kim SI, Kim SJ, Kim S-K, Lee H (2006) Reinforcement of polymeric nanofibers by ferritin nanoparticles. Appl Phys Lett 88:193901. https://doi.org/10.1063/1.2200469

    Article  Google Scholar 

  83. Silva GA (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355. https://doi.org/10.1126/science.1093783

    Article  Google Scholar 

  84. Srinivasan G, Reneker DH (1995) Structure and morphology of small diameter electrospun aramid fibers. Polym Int 36:195–201. https://doi.org/10.1002/pi.1995.210360210

    Article  Google Scholar 

  85. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745. https://doi.org/10.1021/cm020587b

    Article  Google Scholar 

  86. Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers – a review. Compos Sci Technol 66:1102–1111. https://doi.org/10.1016/j.compscitech.2005.10.003

    Article  Google Scholar 

  87. Tan EPS, Ng SY, Lim CT (2005) Tensile testing of a single ultrafine polymeric fiber. Biomaterials 26:1453–1456. https://doi.org/10.1016/j.biomaterials.2004.05.021

    Article  Google Scholar 

  88. Thandavamoorthy S, Gopinath N, Ramkumar SS (2006) Self-assembled honeycomb polyurethane nanofibers. J Appl Polym Sci 101:3121–3124. https://doi.org/10.1002/app.24333

    Article  Google Scholar 

  89. Tian M, Gao Y, Liu Y, Liao Y, Xu R, Hedin NE, Fong H (2007) Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48:2720–2728. https://doi.org/10.1016/j.polymer.2007.03.032

    Article  Google Scholar 

  90. Tomlins P (2004) Characterisation and design of tissue scaffolds. Woodhead Publishing, Oxford, UK

    Google Scholar 

  91. Torrisi A (2008) XPS study of five fluorinated compounds deposited on calcarenite stone. Appl Surf Sci 254:2650–2658. https://doi.org/10.1016/j.apsusc.2007.10.003

    Article  Google Scholar 

  92. Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B (2005) High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol 39:7684–7691. https://doi.org/10.1021/es050512j

    Article  Google Scholar 

  93. Xu LR, Li L, Lukehart CM, Kuai H (2007) Mechanical characterization of nanofiber-reinforced composite adhesives. J Nanosci Nanotechnol 7:2546–2548

    Article  Google Scholar 

  94. Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S (2004) Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J Biomater Sci Polym Ed 15:1483–1497. https://doi.org/10.1163/1568562042459733

    Article  Google Scholar 

  95. Yang T, Yang H, Zhen SJ, Huang CZ (2015) Hydrogen-bond-mediated in situ fabrication of AgNPs/Agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl Mater Interfaces 7:1586–1594. https://doi.org/10.1021/am507010q

    Article  Google Scholar 

  96. Yui H, Wu G, Sano H, Sumita M, Kino K (2006) Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47:3599–3608. https://doi.org/10.1016/j.polymer.2006.03.064

    Article  Google Scholar 

  97. Zhong WH, Li J, Xu LR, Michel JA, Sullivan LM, Lukehart CM (2004) Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules. J Nanosci Nanotechnol 4:794–802

    Article  Google Scholar 

  98. Zhou W, Wu Y, Wei F, Luo G, Qian W (2005) Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs–PEO and MWCNTs–PVA nanofibers. Polymer 46:12689–12695. https://doi.org/10.1016/j.polymer.2005.10.114

    Article  Google Scholar 

  99. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412. https://doi.org/10.1016/S0032-3861(02)00275-6

    Article  Google Scholar 

  100. Zong X, Ran S, Fang D, Hsiao BS, Chu B (2003) Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer 44:4959–4967. https://doi.org/10.1016/S0032-3861(03)00464-6

    Article  Google Scholar 

  101. Zong X, Ran S, Kim K-S, Fang D, Hsiao BS, Chu B (2003) Structure and morphology changes during in vitro degradation of electrospun poly(glycolide- co -lactide) nanofiber membrane. Biomacromolecules 4:416–423. https://doi.org/10.1021/bm025717o

    Article  Google Scholar 

  102. Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43:2175–2185. https://doi.org/10.1016/j.carbon.2005.03.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roodbar Shojaei, T., Hajalilou, A., Tabatabaei, M., Mobli, H., Aghbashlo, M. (2018). Characterization and Evaluation of Nanofiber Materials. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics