Skip to main content

Genetics and Molecular Features of Bacterial Dimethylsulfoniopropionate (DMSP) and Dimethyl Sulfide (DMS) Transformations

  • Living reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 169 Accesses

Abstract

The transformations of dimethylsulfoniopropionate (DMSP; (CH3)2S+CH2CH2COO) by bacterioplankton play important roles in the global sulfur cycle. This compound is produced in large quantities primarily for use as an osmolyte by marine algae. DMSP is a labile compound although the complete mineralization of DMSP is only a minor fate in the ocean. DMSP is the main precursor of dimethyl sulfide (DMS; CH3–S–CH3), a radiatively active trace gas that contributes to global climate regulation. However, it is believed that the main pathway for the transformation of DMSP involves an assimilation step in which DMSP sulfur is incorporated efficiently into cell biomass, leaving relatively little sulfur available for release as DMS. DMSP is rapidly turned over in the environment and the diversity of pathways for its transformation are likely not yet fully realized. This chapter covers recent findings on the genetics of DMSP catabolism; their discoveries are changing our view of the role of this compound in the world’s oceans. Although even less is known about bacterially mediated transformations of DMS, the handful of genes that have been described in a limited number of bacteria is also reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baxter NJ, Scanlan J, De Marco P, Wood AP, Murrell JC (2002) Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol 68:289–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP (2000) Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch Microbiol 173:425–437

    CAS  PubMed  Google Scholar 

  • Bürgmann H, Howard EC, Ye W, Sun F, Sun S, Napierala S, Moran MA (2007) Transcriptional response of Silicibacter pomeroyi DSS-3 to dimethylsulfoniopropionate (DMSP). Environ Microbiol 9:2742–2755

    PubMed  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661

    CAS  Google Scholar 

  • Cosquer A, Pichereau V, Pocard J-A, Minet J, Cormier M, Bernard T (1999) Nanomolar levels of dimethylsulfoniopropionate, dimethylsulfonioacetate, and glycine betaine are sufficient to confer osmoprotection to Escherichia coli. Appl Environ Microbiol 65:3304–3311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curson AR, Rogers R, Todd JD, Brearley CA, Johnston AW (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10:757–767

    CAS  PubMed  Google Scholar 

  • De Bont JAM, van Dijken JP, Harder W (1981) Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. J Gen Microbiol 127:315–323

    CAS  Google Scholar 

  • De Marco P, Moradas-Ferreira P, Higgins TP, McDonald I, Kenna EM, Murrell JC (1999) Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J Bacteriol 181:2244–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Souza MP, Yoch DC (1996) N-terminal amino acid sequences and comparison of DMSP lyases from Pseudomonas doudoroffii and Alcaligenes strain M3A. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Environmental and biological chemistry on dimethylsulfoniopropionate and related sulfonium compounds. Plenum Press, New York, pp 293–304

    Google Scholar 

  • Del Valle DA, Kieber DJ, Kiene RP (2007) Depth-dependent fate of biologically-consumed dimethylsulfide in the Sargasso Sea. Mar Chem 103:197–208

    CAS  Google Scholar 

  • DeZwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270

    CAS  Google Scholar 

  • Endoh T, Kasuga K, Horinouchi M, Yoshida T, Habe H, Nojiri H, Omori T (2003) Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Appl Microbiol Biotechnol 62:83–91

    CAS  PubMed  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuse H, Takimura O, Murakami K, Yamaoka Y, Omori T (2000) Utilization of dimethyl sulfide as a sulfur source with the aid of light by Marinobacterium sp. strain DMS-S1. Appl Environ Microbiol 66:5527–5532

    CAS  PubMed  PubMed Central  Google Scholar 

  • González JM, Kiene RP, Moran MA (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appl Environ Microbiol 65:3810–3819

    PubMed  PubMed Central  Google Scholar 

  • Hanlon SP, Holt RA, Moore GR, McEwan AG (1994) Isolation and characterization of a strain of Rhodobacter sulfidophilus: a bacterium which grows autotrophically with dimethylsulfide as electron-donor. Microbiology 140:1953–1958

    CAS  Google Scholar 

  • Horinouchi M, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol Lett 155:99–105

    CAS  PubMed  Google Scholar 

  • Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, Ye W, González JM, Mace K, Joye SB, Kiene RP, Whitman WB, Moran MA (2006) Bacterial taxa that limit sulfur flux from the ocean. Science 314:649–652

    CAS  PubMed  Google Scholar 

  • Howard EC, Sun S, Biers EJ, Moran MA (2008) Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol 10:2397–2410

    CAS  PubMed  Google Scholar 

  • Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulfide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19

    CAS  Google Scholar 

  • Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys Res 26:26793–26808

    Google Scholar 

  • Kiene RP, Linn LJ (2000) Distribution and turnover of dissolved DMSP and its relationships with bacterial production and dimethylsulfide in the Gulf of Mexico. Limnol Oceanogr 45:849–861

    CAS  Google Scholar 

  • Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52:1037–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiene RP, Hoffman Williams LP, Walker JE (1998) Seawater microorganisms have a high affinity glycine betaine uptake system which also recognizes dimethylsulfoniopropionate. Aquat Microb Ecol 15:39–51

    Google Scholar 

  • Kiene RP, Linn LJ, González JM, Moran MA, Bruton JA (1999) Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65:4549–4558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224

    CAS  Google Scholar 

  • Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL (2004) Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol 70:4129–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP et al (2004) Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432:910–913

    CAS  PubMed  Google Scholar 

  • Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S et al (2007) Ecological genomics of marine roseobacters. Appl Environ Microbiol 73:4559–4569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omori T, Saiki Y, Kasuga K, Kodama T (1995) Desulfurization of alkyl and aromatic sulfides and sulfonates by dibenzothiophene-desulfurizing Rhodococcus sp. strain SY1. Biosci Biotechnol Biochem 59:1195–1198

    CAS  Google Scholar 

  • Pol A, Op den Camp HJ, Mees SG, Kersten MA, van der Drift C (1994) Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112

    CAS  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S et al (2007) Oceanic metagenomics: the Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    PubMed  PubMed Central  Google Scholar 

  • Schaefer JF, Goodwin KD, McDonald IR, Murrell JC, Oremland RS (2002) Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52:851–859

    CAS  PubMed  Google Scholar 

  • Schäfer H (2007) Isolation of Methylophaga spp. from marine dimethylsulfide-degrading enrichment cultures and identification of polypeptides induced during growth on dimethylsulfide. Appl Environ Microbiol 73:2580–2591

    PubMed  PubMed Central  Google Scholar 

  • Simó R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 16:287–294

    PubMed  Google Scholar 

  • Simó R, Pedrós-Alió C (1999) Short-term variability in the open ocean cycle of dimethylsulfide. Global Biogeochem Cycles 13:1173–1181

    Google Scholar 

  • Simó R, Archer SD, Pedrós-Alió C, Gilpin L, Stelfox-Widdicombe CE (2002) Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol Oceanogr 47:53–61

    Google Scholar 

  • Suylen GMH, Kuenen JG (1986) Chemostat enrichment and isolation of Hyphomicrobium EG a dimethyl sulfide oxidizing methylotroph and reevaluation of Thiobacillus MS1. Antonie Leeuwenhoek 52:281–293

    CAS  PubMed  Google Scholar 

  • Suylen GMH, Stefess GC, Kuenen JG (1986) Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds. Arch Microbiol 146:192–198

    CAS  Google Scholar 

  • Suylen GMH, Large PJ, van Dijken JP, Kuenen JG (1987) Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulphur compounds by Hyphomicrobium EG. J Gen Microbiol 133:2989–2997

    CAS  Google Scholar 

  • Tanimoto Y, Bak F (1994) Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria. Appl Environ Microbiol 60:2450–2455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson AR, Malin G, Steinke M, Johnston AW (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666–669

    CAS  PubMed  Google Scholar 

  • Tripp JH, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–744

    CAS  PubMed  Google Scholar 

  • Vallino JJ, Hopkinson CS, Hobbie JE (1996) Modeling bacterial utilization of dissolved organic matter: optimization replaces Monod growth kinetics. Limnol Oceanogr 41:1591–1609

    CAS  Google Scholar 

  • Vila M, Simó R, Kiene RP, Pinhassi J, González JM, Moran MA, Pedrós-Alió C (2004) Use of microautoradiography combined with fluorescence in situ hybridization to determine dimethylsulfoniopropionate incorporation by marine bacterioplankton taxa. Appl Environ Microbiol 70:4648–4657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vila-Costa M, del Valle DA, González JM, Slezak D, Kiene RP, Sánchez O, Simó R (2006) Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria. Environ Microbiol 8:2189–2200

    CAS  PubMed  Google Scholar 

  • Vila-Costa M, Pinhassi J, Alonso C, Pernthaler J, Simó R (2007) An annual cycle of dimethylsulfoniopropionate-sulfur and leucine assimilating bacterioplankton in the coastal NW Mediterranean. Environ Microbiol 9:2451–2463

    CAS  PubMed  Google Scholar 

  • Visscher PT, Taylor BF (1994) Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Appl Environ Microbiol 60:4617–4619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

González, J.M., Johnston, A.W.B., Vila-Costa, M., Buchan, A. (2017). Genetics and Molecular Features of Bacterial Dimethylsulfoniopropionate (DMSP) and Dimethyl Sulfide (DMS) Transformations. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-39782-5_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39782-5_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39782-5

  • Online ISBN: 978-3-319-39782-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics