Skip to main content

Anaerobic Methane Oxidation in Freshwater Environments

  • Living reference work entry
  • First Online:
Anaerobic Utilization of Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Anaerobic methane oxidation was long thought to be limited to marine environments. Meanwhile, anaerobic methane oxidation coupled to denitrification, carried out by Candidatus “Methylomirabilis oxyfera”-like bacteria and Candidatus “Methanoperedens nitroreducens”-like archaea, has been discovered in various freshwater environments. Furthermore, this process even has been identified as the major methane sink in some environments such as lakes and peatlands. Anaerobic methane oxidation with sulfate or with oxidized iron and manganese species might also take place in freshwater environments, but the organisms mediating these reactions are unknown, and data on these processes at low salinities are scarce. In addition, a clear distinction between sulfate- and metal-dependent anaerobic methane oxidation has not been possible in most environments. In general, there is not much data available on the importance of anaerobic methane oxidation in freshwater habitats, but the available studies – in concert with molecular detection and quantification of anaerobic methane oxidizing organisms in a variety of freshwater habitats – indicate that anaerobic methane oxidation in freshwater environments could be a globally important methane sink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187

    Article  CAS  PubMed  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19(5):1325–1346

    Article  PubMed  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Carbon and Other Biogeochemical Cycles. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, GonzÁLez L et al (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9(1):61–78

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Ma A, Qi H, Zhuang X, Zhuang G (2015) Anaerobic oxidation of methane: an “active” microbial process. Microbiol Open 4(1):1–11

    Article  CAS  Google Scholar 

  • Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 77(13):4429–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci U S A 111(51):18273–18278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z-W, Ding J, Fu L, Zhang F, Zeng RJ (2014) Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Appl Microbiol Biotechnol 98(24):10211–10221

    Article  CAS  PubMed  Google Scholar 

  • Eller G, Känel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Appl Environ Microbiol 71(12):8925–8928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EPA US (2009) National lakes assessment: a collaborative survey of the nation’s lakes. Office of Water and Office of Research and Development, Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environ Microbiol 10(11):3164–3173

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75(11):3656–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548

    Article  CAS  PubMed  Google Scholar 

  • European Commission Report (2013). Report from the Commission to the Council and the European parliament on the implementation of council directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2008–2011

    Google Scholar 

  • Fu L, Li S-W, Ding Z-W, Ding J, Lu Y-Z, Zeng RJ (2016) Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Water Res 88:808–815

    Article  CAS  PubMed  Google Scholar 

  • Georgieva N, Yaneva Z, Kostadinova G (2013) Analyses and assessment of the spatial and temporal distribution of nitrogen compounds in surface waters. Water Environ J 27(2):187–196

    Article  CAS  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567–570

    Article  CAS  PubMed  Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46(4):431–451

    Article  CAS  Google Scholar 

  • Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY et al (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111(12):4495–4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetten MSM (2008) The microbial nitrogen cycle. Environ Microbiol 10:2903–2909

    Article  CAS  PubMed  Google Scholar 

  • Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47(1):85–92

    Article  CAS  PubMed  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63(1):311–334

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35(4):233–238

    Article  CAS  PubMed  Google Scholar 

  • Luesken FA, Zhu B, van Alen TA, Butler MK, Diaz MR, Song B, Op den Camp HJ, Jetten MS, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 77(11):3877–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs K-J, Strous M, Jetten MSM (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14(4):1024–1034

    Article  CAS  PubMed  Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526(7574):531–535

    Article  CAS  PubMed  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491(7425):541–546

    Article  CAS  PubMed  Google Scholar 

  • Norði K á, Thamdrup B (2014) Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim Cosmochim Acta 132:141–150

    Article  CAS  Google Scholar 

  • Norði K à, Thamdrup B, Schubert CJ (2013) Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnol Oceanogr 58(2):546–554

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921

    Article  CAS  PubMed  Google Scholar 

  • Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G et al (2016) The global methane budget: 2000–2012. Earth Syst Sci Data Discuss. https://doi.org/10.5194/essd-2016-5125

  • Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351(6274):703–707

    Article  CAS  PubMed  Google Scholar 

  • Schink B (2006) In: Overmann J (ed) Syntrophic associations in methanogenic degradation, Molecular Basis of Symbiosis. Springer, Berlin, pp 1–19

    Google Scholar 

  • Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76(1):26–38

    Article  CAS  PubMed  Google Scholar 

  • Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs KU, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6

    Google Scholar 

  • Shen LD, Huang Q, He ZF, Lian X, Liu S, He YF, Lou LP, Xu XY, Zheng P, Hu BL (2015a) Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol 99(1):349–357

    Article  CAS  PubMed  Google Scholar 

  • Shen LD, Wu HS, Gao ZQ (2015b) Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems. Appl Microbiol Biotechnol 99(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56(4):1536–1544

    Article  CAS  Google Scholar 

  • Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8(3):779–793

    Article  CAS  Google Scholar 

  • Smith RL, Howes BL, Garabedian SP (1991) In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. Appl Environ Microbiol 57(7):1997–2004

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thamdrup B (2000) In: Schink B (ed) Bacterial manganese and Iron reduction in aquatic sediments, Advances in Microbial Ecology. Springer, Boston, pp 41–84

    Google Scholar 

  • Thauer RK (2010) Functionalization of methane in anaerobic microorganisms. Angew Chem Int Ed 49(38):6712–6713

    Article  CAS  Google Scholar 

  • Timmers PHA, Suarez-Zuluaga DA, van Rossem M, Diender M, Stams AJM, Plugge CM (2016) Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME J 10(6):1400–1412

    Article  CAS  PubMed  Google Scholar 

  • Turner RE, Rabalais NN, Justic’ D, Dortch Q (2003) Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64(3):297–317

    Article  CAS  Google Scholar 

  • Vaksmaa A, Lüke C, van Alen T, Valè G, Lupotto E, Jetten M, Ettwig K (2016) Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. FEMS Microbiol Ecol 92(12)

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Huang P, Ye F, Jiang Y, Song L, Op den Camp HJM, Zhu G, Wu S (2016) Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir. Appl Microbiol Biotechnol 100(4):1977–1986

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang Y, Long X-E, Guo J, Zhu G (2014) High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiol Lett 360(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, van Dijk G, Fritz C, Smolders AJ, Pol A, Jetten MS, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78(24):8657–8665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu GB, Zhou LL, Wang Y, Wang SY, Guo JH, Long XE, Sun XB, Jiang B, Hou QY, Jetten MSM, Yin CQ (2015) Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environ Microbiol Rep 7(1):128–138

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Stefan Deutzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deutzmann, J.S. (2018). Anaerobic Methane Oxidation in Freshwater Environments. In: Boll, M. (eds) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-33598-8_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33598-8_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33598-8

  • Online ISBN: 978-3-319-33598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics