Skip to main content

Allograft Use in Modern Spinal Surgery

  • Living reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

Allograft use continues to be important in modern spinal surgery due to its abundant supply, ability to customize to shape, and avoidance of donor site morbidity. However, surgeons must be aware of the limitations of the grafts when used in isolation and how to obtain bony healing. These limitations include subsidence from altered mechanical properties, a lack of osteoinduction and risk of immunogenicity. Optimal healing can be achieved through optimizing the host, selecting the correct graft for the bony environment where the healing is required, and optimizing local graft site biology and stability. Tissue engineering in arthrodesis through obtaining a stable mechanical construct, use of an appropriate structural allograft, and placement of a biologic component (e.g., BMP-2) has shown to be a reliable means to obtain union and achieved satisfactory outcomes. Novel biological agents show promise and will continue to mature in their clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ai-Aql ZS, Alagl AS, Graves DT et al (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87(2):107–118

    Article  CAS  Google Scholar 

  • An HS et al (1995) Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-drier, frozen and mixed grafts. J Spinal Disord 8(2):131–135

    Article  CAS  Google Scholar 

  • Anand N et al (2006) Cantilever TLIF with structural allograft and RhBMP2 for correction and maintenance of segmental sagittal lordosis: long-term clinical, radiographic, and functional outcome. Spine (Phila Pa 1976) 31(20):E748–E753

    Article  Google Scholar 

  • Aro HT, Aho AJ (1993) Clinical use of bone allografts. Ann Med 25(4):403–412

    Article  CAS  Google Scholar 

  • Aryan HE et al (2008) Stabilization of the atlantoaxial complex via C-1 lateral mass and C-2 pedicle screw fixation in a multicenter clinical experience in 102 patients: modification of the Harms and Goel techniques. J Neurosurg Spine 8(3):222–229. https://doi.org/10.3171/SPI/2008/8/3/222

    Article  PubMed  Google Scholar 

  • Bais MV, Wigner N, Young M et al (2009) BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 45(2):254–266

    Article  CAS  Google Scholar 

  • Balga R et al (2006) Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone 39(2):325–335

    Article  CAS  Google Scholar 

  • Blanco JS et al (1997) Allograft bone use during instrumentation and fusion in the treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 22(12):1338–1342

    Article  CAS  Google Scholar 

  • Brantigan JW (1994) Pseudarthrosis rate after allograft posterior lumbar interbody fusion with pedicle screw and plate fixation. Spine (Phila Pa 1976) 19(11): 1271–1279; discussion 1280

    Article  CAS  Google Scholar 

  • Brantigan J et al (1993) Compression strength of donor bone for posterior interbody fusion. Spine 18(9): 1213–1221

    Article  CAS  Google Scholar 

  • Breur GJ, VanEnkevort BA, Farnum CE et al (1991) Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res 9(3):348–359

    Article  CAS  Google Scholar 

  • Bridwell KH et al (1995) Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects? Spine (Phila Pa 1976) 20(12):1410–1418

    Article  CAS  Google Scholar 

  • Burkus JK et al (2003) Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16(2):113–122

    Article  Google Scholar 

  • Burkus JK et al (2005) Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am 87(6):1205–1212

    PubMed  Google Scholar 

  • Burkus JK et al (2017) Clinical and radiographic outcomes in patients undergoing single-level anterior cervical arthrodesis: a prospective trial comparing allograft to a reduced dose of rhBMP-2. Clin Spine Surg 30(9):E1321–E1332

    Article  Google Scholar 

  • Buser Z et al (2016) Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine 25(4):509–516

    Article  Google Scholar 

  • Butterman GR (2008) Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J 8(3):426–435. Epub 2007 Mar 7

    Article  Google Scholar 

  • Coric D et al (2018) Prospective, randomized multicenter study of cervical arthroplasty versus anterior cervical discectomy and fusion: 5-year results with a metal-on-metal artificial disc. J Neurosurg Spine 28(3):252–261. https://doi.org/10.3171/2017.5.SPINE16824. Epub 2018 Jan 5.

  • Cornu O et al (2000) Effect of freeze drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 18(3):426–431

    Article  CAS  Google Scholar 

  • Costain DJ et al (2000) Fresh frozen vs irradiated allograft bone in orthopaedic reconstructive surgery. Clin Orthop Relat Res 371:38–45

    Article  Google Scholar 

  • Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36(12):1392–1404

    Article  Google Scholar 

  • Dziedzic-Goclawska A (2005) Irradiation as a safety procedure in tissue banking. Cell Tissue Bank 6:201–219

    Article  CAS  Google Scholar 

  • Einhorn TA (2005) The science of fracture healing. J Orthop Trauma 19(Suppl 10):S4–S6

    Article  Google Scholar 

  • Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A(3):454–464

    Article  Google Scholar 

  • Folsch C et al (2015) Influence of thermal disinfection and duration of cryopreservation at different temperatures on pull out strength of cancellous bone. Cell Tissue Bank 16:73–81

    Article  Google Scholar 

  • Fraser JF, Härtl R (2007) Anterior approaches to fusion of the cervical spine: a metaanalysis of fusion rates. J Neurosurg Spine 6(4):298–303

    Article  Google Scholar 

  • Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5): 873–884

    Article  CAS  Google Scholar 

  • Gerstenfeld LC, Alkhiary YM, Krall EA et al (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54(11): 1215–1228

    Article  CAS  Google Scholar 

  • Giannoudis PV, Einhorn T, Marsh D (2007) Fracture healing: the diamond concept. Injury 38s4:s3–s6

    Article  Google Scholar 

  • Gibson S et al (2002) Allograft versus autograft in instrumented posterolateral lumbar spinal fusion: a randomized control trial. Spine 27(15):1599–1603

    Article  Google Scholar 

  • Glennie RA et al (2016) A systematic review with consensus expert opinion of best reconstructive techniques after osseous en bloc spinal column tumor resection. Spine (Phila Pa 1976) 41(Suppl 20):S205–S211

    Article  Google Scholar 

  • Gornet M et al (2017) Cervical disc arthroplasty with the prestige LP disc versus anterior cervical discectomy and fusion, at 2 levels: results of a prospective, multicenter randomized controlled clinical trial at 24 months. J Neurosurg Spine 26(6):p653–p667

    Article  Google Scholar 

  • Granero-Molto F, Weis JA, Miga MI et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27(8):1887–1898

    Article  CAS  Google Scholar 

  • Green E, Lubahn JD, Evans J (2005) Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv 14(2): 64–72

    PubMed  Google Scholar 

  • Hamer AJ et al (1996) Biomechanical properties of cortical bone allograft using a new method of bone strength measurement. A comparison of, fresh, fresh-frozen and irradiated bone. J Bone Joint Surg Br 78(3):363–368

    Article  CAS  Google Scholar 

  • Janssen ME et al (2005) Anterior lumbar interbody fusion using femoral ring allograft for treatment of degenerative disc disease. Semin Spine Surg 17:251–258

    Article  Google Scholar 

  • Jorgenson SS et al (1994) A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum 1-year follow-up in 144 patients. Spine (Phila Pa 1976) 19(18):2048–2053

    Article  CAS  Google Scholar 

  • Kannan A, Dodwad SN, Hsu WK (2015) Biologics in spine arthrodesis. J Spinal Disord Tech 28:163–170

    Article  Google Scholar 

  • Kempen DHR, Creemers LB, Alblas J, Lu L, Verbout AJ, Yaszemski MJ, Dhert WJA (2010) Growth factor interactions in bone regeneration. Tissue Eng B Rev 16: 551–566

    Article  CAS  Google Scholar 

  • Keramaris NC, Calori GM, Nikolaou VS et al (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39(Suppl 2):S45–S57

    Article  Google Scholar 

  • Laurencin CT, Khan YM (2013) Regenerative engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lee SK, Lorenzo J (2006) Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 18(4): 411–418

    Article  CAS  Google Scholar 

  • Lee SK et al (2006) Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 18(4): 411–418

    Article  CAS  Google Scholar 

  • Marsell R, Einhorn TA (2009) The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury 40(Suppl 3):S4–S7

    Article  Google Scholar 

  • Montgomery DM et al (1990) Posterior spinal fusion: allograft versus autograft bone. J Spinal Disord 3(4): 370–375

    CAS  PubMed  Google Scholar 

  • Mroz T et al (2009) The use of allograft bone in spine surgery:is it safe? Spine J 9:303–308

    Article  Google Scholar 

  • Muzević D et al (2018) Anterior cervical discectomy with instrumented allograft fusion: lordosis restoration and comparison of functional outcomes among patients of different age groups. World Neurosurg 109:e233–e243

    Article  Google Scholar 

  • Nguyen H et al (2007) Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 8:93–105

    Article  Google Scholar 

  • Nockers RP et al (2007) Occipitocervical fusion with rigid internal fixation: long-term follow-up data in 69 patients. J Neurosurg Spine 7(2):117–123

    Article  Google Scholar 

  • Park JH et al (2017) Efficacy of cortico/cancellous composite allograft in treatment of cervical spondylosis. Medicine (Baltimore) 96(33):e7803

    Article  Google Scholar 

  • Peppers TA et al (2017) Prospective clinical and radiographic evaluation of an allogeneic bone matrix containing stem cells (Trinity Evolution® Viable Cellular Bone Matrix) in patients undergoing two-level anterior cervicaldiscectomy and fusion. J Orthop Surg Res 12(1):67. https://doi.org/10.1186/s13018-017-0564-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry CR (1999) Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 360:71–86

    Article  Google Scholar 

  • Pradhan BB et al (2006) Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976) 31(10):E277–E284

    Article  Google Scholar 

  • Price CT et al (2003) Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 28(8):793–798

    Google Scholar 

  • Rahn BA (2002) Bone healing: histologic and physiologic concepts. In: Fackelman GE (ed) Bone in clinical orthopedics. Thieme, Stuttgart, pp 287–326

    Google Scholar 

  • Samartzis D et al (2003) Comparison of allograft to autograft in multilevel anterior cervical discectomy and fusion with rigid plate fixation. Spine J 3(6):451–459

    Article  Google Scholar 

  • Schizas C et al (2008) Posterolateral lumbar spine fusion using a novel demineralized bone matrix: a controlled pilot study. Arch Orthop Trauma Surg 128:621–625

    Article  Google Scholar 

  • Sfeir C et al (2005) Fracture repair. In: Leiberman JR, Freidlander GE (eds) Bone regeneration and repair. Humana Press, Totowa, pp 21–44

    Chapter  Google Scholar 

  • Shapiro F (1988) Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am 70(7):1067–1081

    Article  CAS  Google Scholar 

  • Singh R et al (2016) Radiation sterilization of tissue allografts: a review. World J Radiol 8(4):355–336

    Article  Google Scholar 

  • Slosar PJ et al (2007) Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J 7(3):301–307

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  • Takaso M, Nakazawa T, Imura T, Ueno M, Saito W, Shintani R, Fukushima K, Toyama M, Sukegawa K, Okada T, Fukuda M (2011) Surgical treatment of scoliosis using allograft bone from a regional bone bank. Arch Orthop Trauma Surg 131(2):149–155

    Article  Google Scholar 

  • Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25

    Article  Google Scholar 

  • Tuchman A et al (2017) Autograft versus allograft for cervical spinal fusion: a systematic review. Global Spine J 7(1):59–70

    Article  Google Scholar 

  • Urist MR, Strates BS (1970) Bone formation in implants of partially and wholly demineralized bone matrix. Including observations on acetone-fixed intra and extracellular proteins. Clin Orthop Relat Res 71:271–278

    Article  CAS  Google Scholar 

  • Urist M et al (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283

    Article  CAS  Google Scholar 

  • Vaidya R et al (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br 89(3):342–345

    Article  CAS  Google Scholar 

  • Voor MJ et al (1998) Biomechanical evaluation of posterior and anterior lumbar interbody fusion techniques. J Spinal Disord 11(4):328–334

    Article  CAS  Google Scholar 

  • Wang JC et al (2007) A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 16:1223–1240

    Article  Google Scholar 

  • White E, Shors EC (1986) Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin N Am 30:49–67

    CAS  PubMed  Google Scholar 

  • Yeh KT et al (2017) Fresh frozen cortical strut allograft in two-level anterior cervical corpectomy and fusion. PLoS One 12(8):e0183112. https://doi.org/10.1371/journal.pone.0183112. eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. Scott-Young .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scott-Young, M.N., Zotti, M.G.T. (2019). Allograft Use in Modern Spinal Surgery. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_88-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics