Skip to main content

Brownian Motion

  • Living reference work entry
  • First Online:
Encyclopedia of Wireless Networks
  • 151 Accesses

Synonyms

Diffusion; Molecular propagation; Random motion; Random walk; Thermal excitation of molecules

Definition

Brownian motion is the random motion of particles, e.g., molecules, suspended in the fluid medium, e.g., liquid and gas, that results from a large number of collisions those particles experience with the fast-moving particles of the fluid medium.

Acronyms

BM:

Brownian motion

MC:

Molecular communication

MRBP:

Molecule-receptor binding process

RN:

Receiving nanomachine

TN:

Transmitting nanomachine

VRV:

Virtual reception volume

Historical Background

Brownian motion (BM) is an important phenomenon that is the basis of diffusion-based propagation of molecules in molecular communication (MC) and, therefore, is the fundamental principle behind diffusion-based MC in the field of nanoscale communication networks, also known as nanonetworks. In the field of natural and applied sciences, BM is also popularly known as random walk motion of particles. The history of BM is quite old....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmadzadeh A, Jamali V, Noel A, Schober R (2017) Diffusive mobile molecular communications over time-variant channels. IEEE Commun Lett 21(6):1265–1268

    Article  Google Scholar 

  • Ahmadzadeh A, Jamali V, Schober R (2018) Stochastic channel modeling for diffusive mobile molecular communication systems. IEEE Trans Commun 66(12):6205–6220

    Article  Google Scholar 

  • Akyildiz IF, Brunetti F, Blazquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw J (Elsevier) 52:2260–2279

    Article  Google Scholar 

  • Atakan B, Akan OB (2010) Deterministic capacity of information flow in molecular nanonetworks. Nano Commun Netw 1(1):31–42

    Article  Google Scholar 

  • Berg HC (1993) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219

    Article  Google Scholar 

  • Brown R (1828) A brief account of microscopical observations. Philos Mag 4:161–173

    Article  Google Scholar 

  • Bush SF (2010) Nanoscale communication networks. Artech House, Boston

    Google Scholar 

  • Cao TN, Trinh DP, Jeong Y, Shin H (2015) Anomalous diffusion in molecular communication. IEEE Commun Lett 19(10):1674–1677

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford, UK

    MATH  Google Scholar 

  • Culbertson CT, Jacobson SC, Michael Ramsey J (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56(2):365–373

    Article  Google Scholar 

  • Delgado J, Alves M, Guedes de Carvalho J (2005) A simple and inexpensive technique to measure molecular diffusion coefficients. J Phase Equilib Diffus 26(5):447–451

    Article  Google Scholar 

  • Eckford AW (2007) Nanoscale communication with Brownian motion. In: 2007 41st annual conference on information sciences and systems, 14–16 Mar 2007

    Google Scholar 

  • Einstein A (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Ann Phys 17:549–560

    Article  Google Scholar 

  • Felicetti L, Femminella M, Reali G (2013) Simulation of molecular signaling in blood vessels: software design and application to atherogenesis. Nano Commun Netw 4(3):98–119

    Article  Google Scholar 

  • Freitas RA (1999) Nanomedicine, Vol. 1: Basic capabilities, 1st edn. Landes Bioscience, Austin

    Google Scholar 

  • Gohari A, Mirmohseni M, Nasiri-Kenari M (2016) Information theory of molecular communication: directions and challenges. IEEE Trans Mol Biol Multi-Scale Commun 2(2):120–142

    Article  Google Scholar 

  • Gul E, Atakan B, Akan OB (2010) NanoNS: a nanoscale network simulator framework for molecular communications. Nano Commun Netw 1(2):138–156

    Article  Google Scholar 

  • Haselmayr W, Aejaz SMH, Asyhari AT, Springer A, Guo W (2017) Transposition errors in diffusion-based mobile molecular communication. IEEE Commun Lett 21(9):1973–1976

    Article  Google Scholar 

  • Höfling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4):046602

    Article  MathSciNet  Google Scholar 

  • IEEE (2016) IEEE recommended practice for nanoscale and molecular communication framework. IEEE Std 1906.1-2015, pp 1–64

    Google Scholar 

  • Jamali V, Ahmadzadeh A, Wicke W, Noel A, Schober R (2018) Channel modeling for diffusive molecular communication – a tutorial review. In: The proceedings of IEEE (submitted to)

    Google Scholar 

  • Kadloor S, Adve RS, Eekford AW (2012) Molecular communication using Brownian motion with drift. IEEE Trans Nanobioscience 11(2):89–99

    Article  Google Scholar 

  • Koo B, Lee C, Yilmaz HB, Farsad N, Eckford A, Chae C (2016) Molecular MIMO: from theory to prototype. IEEE J Sel Areas Commun 34(3):600–614

    Article  Google Scholar 

  • Llatser I, Demiray D, Cabellos-Aparicio A, Altilar DT, Alarcón E (2014) N3Sim: simulation framework for diffusion-based molecular communication nanonetworks. Simul Model Pract Theory 42:210–222

    Article  Google Scholar 

  • Mahfuz MU, Makrakis D, Mouftah HT (2014) A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication. IEEE Trans Nanobioscience 13(3):208–222

    Article  Google Scholar 

  • Mahfuz MU, Makrakis D, Mouftah HT (2016) Concentration-encoded subdiffusive molecular communication: theory, channel characteristics, and optimum signal detection. IEEE Trans Nanobioscience 15(6):533–548

    Article  Google Scholar 

  • Mai TC, Egan M, Duong TQ, Renzo MD (2017) Event detection in molecular communication networks with anomalous diffusion. IEEE Commun Lett 21(6):1249–1252

    Article  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  Google Scholar 

  • Nakano T, Okaie Y, Jian-Qin L (2012) Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Commun Lett 16(6):797–800

    Article  Google Scholar 

  • Nakano T, Eckford AW, Haraguchi T (2013) Molecular communication. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Nakano T, Suda T, Okaie Y, Moore M, Vasilakos A (2014) Molecular communication among biological nanomachines: a layered architecture and research issues. IEEE Trans Nanobioscience 13:169

    Article  Google Scholar 

  • Noel A, Cheung KC, Schober R, Makrakis D, Hafid A (2017) Simulating with AcCoRD: actor-based communication via reaction–diffusion. Nano Commun Netw 11:44–75

    Article  Google Scholar 

  • Pierobon M, Akyildiz IF (2010) A physical end-to-end model for molecular communication in nanonetworks. IEEE J Sel Areas Commun 28(4):602–611

    Article  Google Scholar 

  • Pierobon M, Akyildiz IF (2011) Noise analysis in ligand-binding reception for molecular communication in nanonetworks. IEEE Trans Signal Process 59(9):4168–4182

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Upal Mahfuz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahfuz, M.U. (2019). Brownian Motion. In: Shen, X., Lin, X., Zhang, K. (eds) Encyclopedia of Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-32903-1_231-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32903-1_231-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32903-1

  • Online ISBN: 978-3-319-32903-1

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics