Skip to main content

Nuclear Receptors and Epigenetic Regulation

  • Living reference work entry
  • First Online:
  • 117 Accesses

Abstract

The activity of nuclear receptor (NR) at target genes is regulated by the interaction with ligands, coactivators, corepressors, DNA, and histone-modifying proteins. These interactions influence chromatin status and transcription of genes encoding for factors that impinge on breast cancer processes such as cell proliferation, invasion and metastasis, DNA repair, and differentiation. Epigenetic mechanisms such as DNA methylation at CpG islands and histone modifications influence transcriptional activity directed by various NR including the estrogen, progesterone, aromatic hydrocarbon, vitamin D, and retinoic X receptor. In breast tissues, dietary compounds may alter cancer risk through agonistic and antagonistic interactions toward one or more NR. Examples of food ligands for NR include resveratrol, genistein, curcumin, vitamin D, and omega-3 fatty acids. Based on the information that ~80% of breast cancer cases are sporadic, i.e., lack a hereditary origin, studies that focus on the interaction of specific or combinations of food compounds with NR promise to unravel new epigenetic strategies against breast cancer.

This is a preview of subscription content, log in via an institution.

Abbreviations

1,25(OH)2−D3:

Cholecalciferol

5-aza:

5-aza-2′-deoxycytidine

AA:

Arachidonic acid

ABC1:

Amplified in breast cancer 1

AF2:

Activation function domain 2

AhR:

Aromatic hydrocarbon receptor

AI:

Aromatase inhibitor

AP1:

Activator protein 1

ARNT:

Aromatic hydrocarbon receptor nuclear translocator

BRCA1:

Breast cancer 1

CBP:

cAMP-response element-binding protein

CCND1:

Cyclin D1

CCNE:

Cyclin E

CCNG2:

Cyclin G2

CDH1:

E-cadherin

CDK4:

Cyclin-dependent kinase 4

COUP-TFII:

Chicken ovalbumin upstream promoter transition factor II

COX2:

Cyclooxygenase2

CpG:

Cytosine-phosphate-guanine

CR:

Caloric restriction

CRE:

cAMP-response element

CTSD:

Cathepsin D

CYP1A1:

Cytochrome P450, family 1, subfamily A, polypeptide 1

CYP1B1:

Cytochrome P450, family 1, subfamily B, polypeptide 1

CYP24A1:

Cytochrome P450, family 24, subfamily A, polypeptide 1

CYP27B1:

Cytochrome P450, family 27, subfamily B, polypeptide 1

DHA:

Docosahexaenoic acid

DNMT:

DNA methyltransferase

EGCG:

Epigallocatechin gallate

EHMT1:

Eukaryotic histone methyltransferase 1

EPA:

Eicosapentaenoic acid

EPHB3:

Ephrin type-B receptor 3

ER:

Estrogen receptor

ERE:

Estrogen receptor element

ERK:

Extracellular signal-regulated kinase 1

EVOO:

Extra-virgin olive oil

EZH2:

Enhancer of zeste homolog 2

FOXO-1:

Forkhead box O1

GADD45:

Growth arrest and DNA damage 45

GRIP1:

Glucocorticoid receptor interacting protein 1

H3K23Ac:

Acetylated histone 3 at lysine 23

H3K27me3:

Trimethylated histone 3 at lysine 27

H3K4me:

Methylated histone 3 at lysine 4

H3K9Ac:

Acetylated histone 3 at lysine 9

H3Ser10P:

Phosphorylated H3 at serine 10

H4Ac:

Acetylated histone 4

H4K20Ac:

Acetylated histone 4 at lysine 20

H4K20me3:

Trimethylated histone 4 at lysine 20

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HDM:

Histone demethylase

HER2:

Human epidermal growth factor receptor 2

HLCS:

Holocarboxylase synthetase

HMT:

Histone methyltransferase

HP1:

Heterochromatin protein 1

IGFBP4:

Insulin-like growth factor-binding protein 4

KL:

Klotho

LA:

Linoleic acid

LCA:

Lithocholic acid

LOH:

Loss of heterozygosity

LSD1:

Lysine demethylase 1

LUM:

Luminal

MBD2:

Methyl-binding domain protein 2

MeCP2:

Methylated cytosine-binding protein 2

MLK3:

Mixed lineage kinase 3

MLL3:

Mixed lineage leukemia 3

NCoA:

Nuclear coactivator

NCoR:

Nuclear corepressor

NcRNA:

Noncoding RNA

NFkB:

Nuclear factor kB

NR:

Nuclear receptor

PI3K:

Phosphoinositide 3-kinase

PIK3K:

Phosphatidylinositol-4,5-bisphosphate 3 kinase

PKA:

Protein kinase A

PKCA:

Protein kinase C alpha

PolII:

RNA polymerase II

PR:

Progesterone receptor

PRG:

Progesterone receptor gene

PTEN:

Phosphatase and tensin homolog

PTGES:

Prostaglandin E synthase

RA:

Retinoic acid

RAR:

Retinoic acid receptor

RARE:

Retinoic acid responsive element

RXR:

Retinoic X receptor

SET 7/9:

Methylase histone-lysine N-methyltransferase SET domain 7/9

SFN:

Sulforaphane

Sin3A:

Sin 3 member A

SIRT1:

Sirtuin 1

SMRT:

Silencing-mediator for retinoic and thyroid

SMYD2:

SET and MYND domain-containing 2

Sp1:

Specificity protein 1

SRC1:

Steroid receptor coactivator 1

STAT3:

Signal transducer and activator of transcription 3

SWI/SNF:

Switch/sucrose non-fermentable nucleosome factor

TAM:

Tamoxifen

TRIM6:

Tripartite motif-containing 6

TRβ:

Thyroid receptor-β

VDR:

Vitamin D receptor

VDRE:

VDR-responsive element

WIF1:

Wnt inhibitory factor 1

XRE:

Xenobiotic response element

References

  • Abdel-Hafiz HA, Horwitz KB (2015) Role of epigenetic modifications in luminal breast cancer. Epigenomics 5:847–862

    Article  CAS  Google Scholar 

  • An J, Tzagarakis-Foster C, Scharschmidt TC et al (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276:17808–17814

    Article  CAS  PubMed  Google Scholar 

  • Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304

    Article  CAS  PubMed  Google Scholar 

  • Bandera Merchan B, Morcillo S, Martin-Nuñez G et al (2017) The role of vitamin D and VDR in carcinogenesis: through epidemiology and basic sciences. J Steroid Biochem Mol Biol 167:203–218

    Article  CAS  PubMed  Google Scholar 

  • Bangarusamy DK, Ramasamy A, Vergara LA et al (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5:R66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao B, Pestinger V, Hassan YI et al (2011) Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18. J Nutr Biochem 22:470–475

    Article  CAS  PubMed  Google Scholar 

  • Bartella V, Rizza P, Barone I et al. Estrogen receptor beta binds Sp1and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Res Treat 2012; m134:569–581. Erratum in: Breast Cancer Res Treat. 2016; 156:409. https://doi.org/10.1007/s10549-016-3753-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartik L, Whitfield GK, Kaczmarska M et al (2010) Curcumin: a novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. J Nutr Biochem 21:1153–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer SR, Hankinson SE, Bertone-Johnson ER et al (2013) Plasma vitamin D levels, menopause, and risk of breast cancer: dose-response meta-analysis of prospective studies. Medicine 92:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11:726–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosviel R, Dumollard E, Déchelotte P et al (2012) Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? OMICS 16:235–244

    Article  CAS  PubMed  Google Scholar 

  • Bouchal J, Santer FR, Höschele PP et al (2011) Transcriptional coactivators p300 and CBP stimulate estrogen receptor-beta signaling and regulate cellular events in prostate cancer. Prostate 71:431–437

    Article  CAS  PubMed  Google Scholar 

  • Bouillon R, Carmeliet G, Verlinden L et al (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JL, Tyulmenkov VV, Jernigan SC et al (2000) Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 141:3657–3667

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Rao Y, Zheng Y et al (2014) Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One 9:e89288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chew YC, West JT, Kratzer SJ et al (2008) Biotinylation of histones represses transposable elements in human and mouse cells and cell lines and in Drosophila melanogaster. J Nutr 138:2316–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuffa LG, Lupi-Júnior LA, Costa AB et al (2017) The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 118:93–108

    Article  CAS  PubMed  Google Scholar 

  • Cicatiello L, Addeo R, Sasso A et al (2004) Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol 24:7260–7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dampf Stone A, Batie SF, Sabir MS et al (2015) Resveratrol potentiates vitamin D and nuclear receptor signaling. J Cell Biochem 116:1130–1143

    Article  CAS  PubMed  Google Scholar 

  • De Amicis F, Zupo S, Panno ML et al (2009) Progesterone receptor B recruits a repressor complex to a half-PRE site of the estrogen receptor alpha gene promoter. Mol Endocrinol 23:454–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deeb KK, Trump DL, Johnson CS (2007) Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7:684–700

    Article  CAS  PubMed  Google Scholar 

  • Degner SC, Papoutsis AJ, Selmin O et al (2009) Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by theindole-3-carbinol metabolite 3,3′-diindolylmethane in breast cancer cells. J Nutr 139:26–32

    Article  PubMed  CAS  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  CAS  PubMed  Google Scholar 

  • Dilworth FJ, Fromental-Ramain C, Remboutsika E et al (1999) Ligand-dependent activation of transcription in vitro by retinoic acid receptor alpha/retinoid X receptor alpha heterodimers that mimics transactivation by retinoids in vivo. Proc Natl Acad Sci U S A 96:1995–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dormann HL, Tseng BS, Allis CD et al (2006) Dynamic regulation of effector protein binding to histone modifications: the biology of HP1 switching. Cell Cycle 5:2842–2851

    Article  CAS  PubMed  Google Scholar 

  • Dreijerink KM, Mulder KW, Winkler GS et al (2006) Menin links estrogen receptor activation to histone H3K4 trimethylation. Cancer Res 66:4929–4935

    Article  CAS  PubMed  Google Scholar 

  • Fackler MJ, McVeigh M, Evron E et al (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107:970–975

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Jian ZY, Shen XF et al (2015) Promoter methylation of the retinoic acid receptor Beta2 (RARβ2) is associated with increased risk of breast cancer: a PRISMA compliant meta- analysis. PLoS One 10:e0140329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gadaleta RM, Magnani L (2014) Nuclear receptors and chromatin: an inducible couple. J Mol Endocrinol 52:R137–R149

    Article  CAS  PubMed  Google Scholar 

  • Gehm BD, McAndrews JM, Chien PY et al (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 94:14138–14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goeman F, De Nicola F, D’Onorio De Meo P et al (2014) VDR primary targets by genome-wide transcriptional profiling. J Steroid Biochem Mol Biol 143:348–356

    Article  CAS  PubMed  Google Scholar 

  • Goode G, Pratap S, Eltom SE (2014) Depletion of the aryl hydrocarbon receptor in MDA-MB-231 human breast cancer cells altered the expression of genes in key regulatory pathways of cancer. PLoS One 9:e100103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greathouse KL, Bredfeldt T, Everitt JI et al (2012) Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res 10:546–557

    Article  CAS  PubMed  Google Scholar 

  • Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964

    Article  CAS  PubMed  Google Scholar 

  • Gruber CJ, Tschugguel W, Schneeberger C et al (2002) Production and actions of estrogens. N Engl J Med 346:340–352

    Article  CAS  PubMed  Google Scholar 

  • Haldosén LA, Zhao C, Dahlman-Wright K (2014) Estrogen receptor beta in breast cancer. Mol Cell Endocrinol 382:665–672

    Article  PubMed  CAS  Google Scholar 

  • Hansberg-Pastor V, González-Arenas A, Peña-Ortiz MA et al (2013) The role of DNA methylation and histone acetylation in the regulation of progesterone receptor isoforms expression in human astrocytoma cell lines. Steroids 78:500–507

    Article  CAS  PubMed  Google Scholar 

  • Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3:503–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haussler MR, Haussler CA, Bartik L et al (2008) Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev (10 Suppl 2):S98–S112

    Article  PubMed  Google Scholar 

  • Haussler MR, Whitfield GK, Kaneko I et al (2013) Molecular mechanisms of vitamin D action. Calcif Tissue Int 92:77–98

    Article  CAS  PubMed  Google Scholar 

  • Hestermann EV, Brown M (2003) Agonist and chemopreventative ligands induce differential transcriptional cofactor recruitment by aryl hydrocarbon receptor. Mol Cell Biol 23:7920–7925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiragami-Hamada K, Shinmyozu K, Hamada D et al (2001) N-terminal phosphorylation of HP1{alpha} promotes its chromatin binding. Mol Cell Biol 31:1186–1200

    Article  CAS  Google Scholar 

  • Hockings JK, Thorne PA, Kemp MQ et al (2006) The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA1 promoter by estrogen. Cancer Res 66:2224–2232

    Article  CAS  PubMed  Google Scholar 

  • Hong T, Nakagawa T, Pan W et al (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317:259–264

    Article  CAS  PubMed  Google Scholar 

  • Jeffy BD, Hockings JK, Kemp MQ et al (2005) An estrogen receptor-alpha/p300 complex activates the BRCA1 promoter at an AP-1 site that binds Jun/Fos transcription factors: repressive effects of p53 on BRCA1 transcription. Neoplasia 7:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabos P, Haughian JM, Wang X et al (2011) Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 128:45–55

    Article  CAS  PubMed  Google Scholar 

  • Kanwal R, Datt M, Liu X et al (2016) Dietary flavones as dual inhibitors of DNA methyltransferases and histone methyltransferases. PLoS One 11:e0162956. Erratum in: PLoS One. 2016; 11:e0167897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S, Shevde NK, Pike JW (2005) 1, 25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J Bone Miner Res 20:305–317

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Kondo T, Takada I et al (2012) DNA demethylation in hormone-induced transcriptional derepression. Nature 486:1280. Retraction of: Kim MS, Kondo T, Takada I, Youn MY, Yamamoto Y, Takahashi S, Matsumoto T, Fujiyama S, Shirode Y, Yamaoka I, et al. Nature. 2009; 461:1007–1012

    Article  CAS  Google Scholar 

  • Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632–7635

    Article  CAS  PubMed  Google Scholar 

  • Kouzmenko A, Ohtake F, Fujiki R et al (2010) Hormonal gene regulation through DNA methylation and demethylation. Epigenomics 2:765–774

    Article  CAS  PubMed  Google Scholar 

  • Krishnan AV, Swami S, Peng L et al (2010) Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinology 151:32–42

    Article  CAS  PubMed  Google Scholar 

  • Kurebayashi J, Otsuki T, Kunisue H et al (2000) Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer. Clin Cancer Res 6:512–518

    CAS  PubMed  Google Scholar 

  • Lecomte S, Lelong M, Bourgine G et al (2017) Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation. Toxicol Appl Pharmacol 325:61–70

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Roeder RG, Lee JW (2009) Roles of histone H3-lysine 4 methyltransferase complexes in NR- mediated gene transcription. Prog Mol Biol Transl Sci 87:343–382

    Article  CAS  PubMed  Google Scholar 

  • Leehy KA, Truong TH, Mauro LJ et al (2017) Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 176:88–93. Epub2017

    Article  CAS  PubMed  Google Scholar 

  • Leuenberger N, Pradervand S, Wahli W (2009) Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J Clin Invest 119:3138–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun L, Zhang Y et al (2011) The histone modifications governing TFF1 transcription mediated by estrogen receptor. J Biol Chem 286:13925–13936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Xu W, Huang Y et al (2012) Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int J Mol Med 30:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hassan YI, Moriyama H, Zempleni J (2013a) Holocarboxylase synthetase interacts physically with euchromatic histone-lysine N-methyltransferase, linking histone biotinylation with methylation events. J Nutr Biochem 24:1446–1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Meeran SM, Patel SN et al (2013b) Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol Cancer 12:9–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Meeran SM, Tollefsbol TO (2017) Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERα expression. Sci Rep 7:9345. https://doi.org/10.1038/s41598-017-09764-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CY, Ström A, Vega VB et al (2004) Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 5:R66

    Article  PubMed  PubMed Central  Google Scholar 

  • Locke WJ, Zotenko E, Stirzaker C et al (2015) Coordinated epigenetic remodelling of transcriptional networks occurs during early breast carcinogenesis. Clin Epigenetics 7:52. https://doi.org/10.1186/s13148-015-0086-0. eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Fan M, Bigsby RM et al (2008) Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms. Mol Cancer Ther 7:2096–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes N, Carvalho J, Durães C et al (2012) Alpha 25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Res 32:249–257

    CAS  PubMed  Google Scholar 

  • Louie MC, Sevigny MB (2017) Steroid hormone receptors as prognostic markers in breast cancer. Am J Cancer Res 8:1617–1636

    Google Scholar 

  • Ma L, Yuan L, An J et al (2016) Histone H3 lysine 23 acetylation is associated with oncogene TRIM24 expression and a poor prognosis in breast cancer. Tumour Biol 37:14803–14812

    Article  CAS  PubMed  Google Scholar 

  • Manzanares MÁ, Solanas M, Moral R et al (2015) Dietary extra-virgin olive oil and corn oil differentially modulate the mRNA expression of xenobiotic-metabolizing enzymes in the liver and in the mammary gland in a rat chemically induced breast cancer model. Eur J Cancer Prev 24:215–222

    Article  CAS  PubMed  Google Scholar 

  • Marik R, Fackler M, Gabrielson E et al (2010) DNA methylation-related vitamin D receptor insensitivity in breast cancer. Cancer Biol Ther 10:44–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Iglesias OA, Alonso-Merino E, Gómez-Rey S et al (2016) Autoregulatory loop of nuclear corepressor 1 expression controls invasion, tumor growth, and metastasis. Proc Natl Acad Sci U S A 113:E328–E337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Métivier R, Penot G, Hübner MR et al (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763

    Article  PubMed  Google Scholar 

  • Métivier R, Gallais R, Tiffoche C et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    Article  PubMed  CAS  Google Scholar 

  • Miranda TB, Jones PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213:384–390

    Article  CAS  PubMed  Google Scholar 

  • Mongan NP, Gudas LJ (2005) Valproic acid, in combination with all-trans retinoic acid and 5-aza-2′- deoxycytidine, restores expression of silenced RARbeta2 in breast cancer cells. Mol Cancer Ther 4:477–486

    CAS  PubMed  Google Scholar 

  • Moore SC, Matthews CE, Ou Shu X et al (2016) Endogenous estrogens, estrogen metabolites, and breast cancer risk in postmenopausal Chinese women. J Natl Cancer Inst 108(10). https://doi.org/10.1093/jnci/djw103

    Article  PubMed Central  CAS  Google Scholar 

  • Murayama A, Kim MS, Yanagisawa J et al (2004) Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J 23:1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niehrs C (2009) Active DNA demethylation and DNA repair. Differentiation 77:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nordeen SK, Bona BJ, Jones DN et al (2013) Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin. Horm Cancer 4:293–300

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lozach J, Benner C, Pascual G et al (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122:707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtake F, Takeyama K, Matsumoto T et al (2003) Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423:545–550

    Article  CAS  PubMed  Google Scholar 

  • Oseni T, Patel R, Pyle J et al (2008) Selective estrogen receptor modulators and phytoestrogens. Planta Med 74:1656–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabona JM, Dave B, Su Y et al (2013) The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein. Genes Nutr 8:79–90

    Article  CAS  PubMed  Google Scholar 

  • Papoutsis AJ, Lamore SD, Wondrak GT et al (2010) Resveratrol prevents epigenetic silencing of BRCA1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr 140:1607–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papoutsis AJ, Borg JL, Selmin OI et al (2012) BRCA1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells. J Nutr Biochem 23:1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Papoutsis AJ, Selmin OI, Borg JL et al (2015) Gestational exposure to the AhR agonist 2,3,7,8- tetrachlorodibenzo-p-dioxin induces BRCA1 promoter hypermethylation and reduces BRCA1 expression in mammary tissue of rat offspring: preventive effects of resveratrol. Mol Carcinog 54:261–269

    Article  CAS  PubMed  Google Scholar 

  • Pathiraja TN, Shetty PB, Jelinek J et al (2011) Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res 17:4177–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendás-Franco N, González-Sancho JM, Suárez Y et al (2007) Vitamin D regulates the phenotype of human breast cancer cells. Differentiation 75:193–207

    Article  PubMed  CAS  Google Scholar 

  • Prahalad P, Dakshanamurthy S, Ressom H et al (2010) Retinoic acid mediates regulation of network formation by COUP-TFII and VE-cadherin expression by TGFbeta receptor kinase in breast cancer cells. PLoS One 5:e10023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin W, Zhu W, Shi H et al (2009) Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer 61:238–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romagnolo D, Annab LA, Thompson TE et al (1998) Estrogen upregulation of BRCA1 expression with no effect on localization. Mol Carcinog 22:102–109

    Article  CAS  PubMed  Google Scholar 

  • Romagnolo DF, Degner SC, Selmin O (2010) Dietary compounds that target the AhR and cancer risk. In: Milner JA, Romagnolo DF (eds) Bioactive food components and cancer. Humana Press/Springer, New York, pp 761–782

    Chapter  Google Scholar 

  • Romagnolo DF, Papoutsis AJ, Laukaitis C et al (2015) Constitutive expression of AhR and BRCA1 promoter CpG hypermethylation as biomarkers of ERα-negative breast tumorigenesis. BMC Cancer 15:1026. https://doi.org/10.1186/s12885-015-2044-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romagnolo DF, Donovan MG, Papoutsis AJ et al (2017) Genistein prevents BRCA1 CpG methylation and proliferation in human breast cancer cells with activated aromatic hydrocarbon receptor. Curr Dev Nutr 1(6):e000562

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428

    Article  CAS  PubMed  Google Scholar 

  • Rossetti S, Ren M, Visconti N et al (2016) Tracing anti-cancer and cancer-promoting actions of all- trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate. Oncotarget 7:87064–87080

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi EL, Dunlap SM, Bowers LW et al (2017) Energy balance modulation impacts epigenetic reprogramming, ERα and ERβ expression, and mammary tumor development in MMTV- neu transgenic mice. Cancer Res 77:2500–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safe S, Wang F, Porter W, Duan R et al (1998) Ah receptor agonists as endocrine disruptors: antiestrogenic activity and mechanisms. Toxicol Lett 102–103:343–347

    Article  PubMed  Google Scholar 

  • Schillaci R, Guzmán P, Cayrol F et al (2012) Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer 12:74. https://doi.org/10.1186/1471-2407-12-74

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider SM, Offterdinger M, Huber H et al (2000) Activation of retinoic acid receptor alpha is sufficient for full induction of retinoid responses in SK-BR-3 and T47D human breast cancer cells. Cancer Res 60:5479–5487

    CAS  PubMed  Google Scholar 

  • Sinha S, Shukla S, Khan S et al (2015) Epigenetic reactivation of p21CIP1/WAF1 and KLOTHO by a combination of bioactive dietary supplements is partially ERα-dependent in ERα-negative human breast cancer cells. Mol Cell Endocrinol 406:102–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirchia SM, Ren M, Pili R et al (2002) Endogenous reactivation of the RARbeta2 tumor suppressor gene epigenetically silenced in breast cancer. Cancer Res 62:2455–2461

    CAS  PubMed  Google Scholar 

  • Sladek FM (2011) What are nuclear receptor ligands? Mol Cell Endocrinol 334(1–2):3–13

    Article  CAS  PubMed  Google Scholar 

  • Stefanska B, Salamé P, Bednarek A et al (2012) Comparative effects of retinoic acid, vitamin D and resveratrol alone and in combination with adenosine analogues on methylation and expression of phosphatase and tensin homologue tumour suppressor gene in breast cancer cells. Br J Nutr 107:781–790

    Article  CAS  PubMed  Google Scholar 

  • Subramanian K, Jia D, Kapoor-Vazirani P et al (2008) Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 30:336–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Xu X, Liu J et al (2011) Epigenetic regulation of retinoic acid receptor β2 gene in the initiation of breast cancer. Med Oncol 28:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Szarc Vel Szic K, Declerck K, Crans RAJ et al (2017) Epigenetic silencing of triple negative breast cancer hallmarks by Withaferin A. Oncotarget 8:40434–40453

    PubMed  Google Scholar 

  • Tan W, Li Q, Chen K et al (2016) Estrogen receptor beta as a prognostic factor in breast cancer patients: a systematic review and meta-analysis. Oncotarget 7:10373–10385

    PubMed  PubMed Central  Google Scholar 

  • Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364

    Article  CAS  PubMed  Google Scholar 

  • Thomassin H, Flavin M, Espinás ML et al (2001) Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 20:1974–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng TH, Chien MH, Lin WL et al (2017) Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation- mediated p21(WAF1/CIP1) expression. Environ Toxicol 32:434–444

    Article  CAS  PubMed  Google Scholar 

  • Viswakarma N, Nair RS, Sondarva G et al (2017) Transcriptional regulation of mixed lineage kinase 3 by estrogen and its implication in ER-positive breast cancer pathogenesis. Oncotarget 8:33172–33184

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Hoivik D, Pollenz R et al (1998) Functional and physical interactions between the estrogen receptor Sp1 and nuclear aryl hydrocarbon receptor complexes. Nucleic Acids Res 26:3044–3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilks AF, Cozens PJ, Mattaj IW et al (1982) Estrogen induces a demethylation at the 5′ end region of the chicken vitellogenin gene. Proc Natl Acad Sci U S A 79:4252–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Wong P, Li W et al (2011) Suppression of WIF-1 through promoter hypermethylation causes accelerated proliferation of the aryl hydrocarbon receptor (AHR) overexpressing MCF10AT1 breast cancer cells. Toxicology 285:97–103

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Bai Q, Zou LY et al (2014) Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosom Cancer 53:422–431

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Wijeratne SS, Zempleni J (2013) Holocarboxylase synthetase synergizes with methyl CpG binding protein 2 and DNA methyltransferase 1 in the transcriptional repression of long- terminal repeats. Epigenetics 8:504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama A, Takezawa S, Schüle R et al (2008) Transrepressive function of TLX requires the histone demethylase LSD1. Mol Cell Biol 28:3995–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HG, Chan DW, Reynolds AB et al (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12:723–734

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Levi L, Siegel R et al (2012) Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ). J Biol Chem 287:42195–42205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zempleni J, Cordonier EL, Baier SR et al (2013) Vitamins, bioactive food compounds, and histone modifications. In: Zempleni J, Suttie JW, Gregory JF III, Stover PJ (eds) Handbook of vitamins, 5th edn. CRC Press, Taylor and Francis Group, Boca Raton, pp 551–564

    Google Scholar 

  • Zhang X, Ho SM (2011) Epigenetics meets endocrinology. J Mol Endocrinol 46:R11–R32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato F. Romagnolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Selmin, O.I., Romagnolo, A.P., Romagnolo, D.F. (2018). Nuclear Receptors and Epigenetic Regulation. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics