Skip to main content

Slow Growth Period and Epigenetics

  • Living reference work entry
  • First Online:
Book cover Handbook of Nutrition, Diet, and Epigenetics
  • 387 Accesses

Abstract

Considerable efforts have been dedicated to uncovering environmental and other risk factors that contribute to or alter the risk of acquiring a disease. But complex non-Mendelian traits and diseases were impervious to investigation by the use of traditional epidemiological and standard genetic approaches. The epigenetic approach, presented here, may contribute to a fruitful etiology that focuses, in this case, on the transgenerational inheritance following ancestors’ exposure during the slow stature growth period in mid-childhood. It is seen as part of the responses over generations following nutrition-related circumstances. When the requirements of nutrition were at its lowest, the child might have been overfed by the abundance after a very good crop, resulting in epigenetic marks transferred to descendants. The agents are supposed be nutritional or nutrition-related. The studies in humans of this specific kind of inheritance are scarce. Three settings have been Överkalix, Sweden, Bristol, the UK, and Taiwan. Recently a German and a Swedish study have explicitly tried to reproduce transgenerational findings of the slow stature growth period sensitivity to starving and loss of parent, respectively, influencing descendant’s mental health and birthweight, respectively. In a small strategic sample in Överkalix has been observed methylations in grandchildren’s pathways related to ancestor’s famine or excess food in mid-childhood, marks such as insulin processing and binding. The research in human transgenerational epigenetic inheritance is small but promises specific preventive and therapeutic measures, in public health and molecular biology, to diminish the plagues of diseases of complex etiology, such as cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  PubMed  Google Scholar 

  • Barker DJP (1994) Mothers, babies, and disease in later life. BMJ Books, London

    Google Scholar 

  • Barker DJP (2004) The developmental origins of adult disease. J Am Coll Nutr 23(suppl6):588S–595S

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417

    Article  CAS  PubMed  Google Scholar 

  • Barker DJP, Martyn CN (1992) The maternal and fetal origins of cardiovascular disease. J Epidemiol Community Health 46:1–11

    Google Scholar 

  • Barker DJP, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ, Osmond C, Thornburg KL, Kajantie E, Forsen TJ, Eriksson JG (2008) A possible link between the pubertal growth of girls and breast cancer in their daughters. Am J Hum Biol 20(2):127–131

    Article  PubMed  Google Scholar 

  • Bateson P, Barker D, Clutton-Brock T, Debal D, D’udine B, Foley RA, Gluckman P, Godfrey P, Kirkwood T, Mirazón Lahr M, McNamara J, Metcalfe MB, Monaghan P, Spencer HG, Sultan SE (2004) Developmental plasticity and human health. Nature 430:419–421

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20:350–358

    Article  CAS  PubMed  Google Scholar 

  • Boucher BJ, Ewen SW, Stowers JM (1994) Betel nut (Areca catechu) consumption and the indication of glucose intolerance in adult CD1 mice and in their F1 and F2 offspring. Diabetologia 37:49–55

    Article  CAS  PubMed  Google Scholar 

  • Bygren LO, Kaati G, Edvinsson S (2001) Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 49:53–59

    Article  CAS  PubMed  Google Scholar 

  • Campbell JH, Perkins P (1988) Transgenerational effects of drug and hormonal treatments in mammals: a review of observations and ideas. Prog Brain Res 73:535–53

    Google Scholar 

  • Chen THH, Chiu YH, Boucher BJ (2006) Transgenerational effects of betal quid chewing on the metabolic syndrome in the Keelung community-based integrated screening program. Am J Clin Nutr 83:688–692

    Article  CAS  PubMed  Google Scholar 

  • Dennis C (2003) Altered states. Nature 421:686–688

    Article  CAS  PubMed  Google Scholar 

  • Forsdahl A (1977) Are poor living conditions during childhood an important risk factor for arteriosclerotic disease? Br J Prev Soc Med 31:91–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel S, Gunnel DJ, Peters TJ, Maynard M, Smith GD (1998) Childhood energy intake and adult mortality from cancer: the Boyd Orr Cohort Study. BMJ 316:499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD and Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305:1733–1736

    Google Scholar 

  • Gluckman PD, Hanson MA (2007) Developmental plasticity and human disease: research directions. J Intern Med 261:461–471

    Article  CAS  PubMed  Google Scholar 

  • Hellstenius J (1871) Skördarna i Sverige och deras verkningar. (Harvests in Sweden and their repercussions). Statistisk Tidskrift, Stockholm, pp 77–119

    Google Scholar 

  • Hopkins PN, Williams RR (1981) A survey of 246 suggested coronary risk factors. Atherosclerosis 40:1–5

    Article  CAS  PubMed  Google Scholar 

  • Hultman CM, Sparen P, Takei N, Murray RM, Cnattingus S (1999) Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case-control study. BMJ 318:412–426

    Article  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variation. Int J Epidemiol 139:69–83

    CAS  Google Scholar 

  • Jablonka E, Lamb MJ (1995) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, Oxford

    Google Scholar 

  • Jablonka E, Lamb MJ (2014) Evolution in four dimensions. The MIT press, Cambridge, MA

    Google Scholar 

  • Jörberg L (1972) A history of prices in Sweden 1732–1914. CWK Gleerups, Lund

    Google Scholar 

  • Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Gen 10:682–688

    Article  CAS  Google Scholar 

  • Kaati G, Bygren LO, Pembrey M, Sjöström M (2007) Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 25:784–790

    Article  Google Scholar 

  • Kuh D, Davey Smith G (1997) The life course and adult chronic disease: an historical perspective with particular reference to coronary heart disease. In: Kuh D, Ben-Shlomo Y (eds) A life course approach to chronic disease epidemiology. Oxford University Press, Oxford, pp 15–41

    Google Scholar 

  • Le Faun J (2000) The rise and fall of modern medicine. Abacus, London

    Google Scholar 

  • Lewontin R (1997) Billions and Billions of Demons. New York Review of Books 44:28–32

    Google Scholar 

  • Olsen J, Sörensen HT, Steffensen FH, Sabroe S, Gillman MW, Fisher P, Rothman KJ (2001) The association of indicators of fetal growth with visual acuity and hearing among conscripts. Epidemiology 12:235–238

    Article  CAS  PubMed  Google Scholar 

  • Osmond C, Barker DJP (2000) Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect 108:545–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Pembrey M, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, Golding J (2006) Sex-specific, sperm-mediated transgenerational response in humans. Eur J Hum Genet 14:159–166

    Article  PubMed  Google Scholar 

  • Pembry M, Saffery R, Bygren LO (2014) Human transgenerational responses to early-life experience: potential impacts on development, health and biomedical research. J Med Genet 51:563–572

    Article  Google Scholar 

  • Petronis A (2010) Epigentics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:710–727

    Article  Google Scholar 

  • Potischman N, Troisi R (1999) In-utero and early life exposures in relation to risk of breast cancer. Cancer Causes Control 10:561–573

    Article  CAS  PubMed  Google Scholar 

  • Prader A, Largo RH, Molinari L (1988) Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta 43(Suppl):52

    Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nature Rev Genet 2:21–32

    Article  CAS  PubMed  Google Scholar 

  • Richards M, Hardy R, Kuh D, Wadsworth MEJ (2001) Birthweight and cognitive function in the British 1946 birth cohort: longitudinal population based study. Br Med J 322:199–203

    Article  CAS  Google Scholar 

  • Sales VM, Ferguson-Smith AC, Patti ME (2017) Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab 25:559–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab M, Syme SL (1997) On paradigms, community participation, and the future of public health. Am J Public Health 87(12):2049–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK (2011) Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6:838–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffensen FH, Sorensen HT, Gillman MW, Rothman KJ, Sabroe S, Fisher P, Olsen J (2000) Low birthweight and preterm delivery as risk factors for asthma and atopic dermatitis in young adult males. Epidemiology 11:185–188

    Article  CAS  PubMed  Google Scholar 

  • Tanner JM (1981) A history of the study of human growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Vågerö D, Rajaleid K (2017) Does childhood trauma influence offspring’s birth characteristics? Int J Epidemiol 46:219–229. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • Vaiserman AM, Koliada AK, Jirtles RL (2017) Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin 10:38

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Berg GJ, Pinger PR (2016) Transgenerational effects of childhood conditions on third generation health and education outcomes. Econ Hum Biol 23:103–120

    Article  PubMed  Google Scholar 

  • Vickersk MH, Breier BH, McCarthy D, Gluckman PD (2003) Sedentary behaviour during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Phys 285:R271–R2R3

    Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lars Olov Bygren or Gunnar Kaati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bygren, L.O., Kaati, G. (2018). Slow Growth Period and Epigenetics. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics