Skip to main content

Stellar Composition, Structure and Evolution: Impact on Habitability

  • Living reference work entry
  • First Online:
Handbook of Exoplanets
  • 371 Accesses

Abstract

While we can imagine numerous scenarios in which diverse types of planets could support life in exotic conditions, for pragmatic reasons the most attention still goes to an Earth-like situation where a surface or near-subsurface biome is made possible by the presence of liquid water. With few exceptions, by far the most important source of energy determining the planet’s surface conditions is instellation from the host star. This is not a constant quantity over the star’s life. If long-term stability is necessary to support detectable life, then the stellar evolution must be taken into account when determining habitability. Stellar composition in turn has a fundamental effect on stellar evolution. The range of variation in individual elements observed in nearby stars is much larger than what is considered in most stellar modeling and can result in gigayear-scale changes in the evolution of sun-like stars. Measurements of stellar composition can also provide insight into the nature of the planets themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Airapetian VS, Glocer A, Khazanov GV et al (2017) How hospitable are space weather affected habitable zones? The role of ion escape. ApJ 836:L3

    Article  ADS  Google Scholar 

  • Aleksandrov IV, Goncharov AF, Stishov SM, Yakovenko EV (1989) High-pressure research: application to earth and planetary sciences. J Exp Theor Phys 50:127

    Google Scholar 

  • Allegre CJ, Poirier JP, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515

    Google Scholar 

  • Ammann MW, Brodholt JP, Dobson DP (2011) Ferrous iron diffusion in ferro-periclase across the spin transition. E&PSL 302:393

    Google Scholar 

  • Anbar AD, Duan Y, Lyons TW, et al (2007) A whiff of oxygen before the great oxidation event?. Science 317:1903

    Google Scholar 

  • Arnett D (1996) Supernovae and nucleosynthesis, Princeton University Press: New Jersey

    Google Scholar 

  • Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the Sun. Annu Rev Astron Astrophys 47:481–522

    Google Scholar 

  • Barnes R, Mullins K, Goldblatt C, Meadows VS, Kasting JF, Heller R (2013) Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology 13:225–250

    Article  ADS  Google Scholar 

  • Barnes R, Meadows VS, Evans N (2015) Comparative habitability of transiting exoplanets. ApJ 814:91

    Google Scholar 

  • Batalha NM et al (2013) A survey for very short-period planets in the Kepler data. ApJ Supplement 204:24

    Google Scholar 

  • Bond JC et al (2006) Abundance distribution of stars with planets. MNRAS 370:163

    Google Scholar 

  • Bond JC et al (2008) Beyond the iron peak: r- and s-process elemental abundances in stars with planets. ApJ 682:1234

    Google Scholar 

  • Bond JC, OBrien DP, Lauretta DS (2010) The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. ApJ 715:1050

    Google Scholar 

  • Borucki WJ et al (2010) Kepler planet-detection mission: introduction and first results. Science 327

    Google Scholar 

  • Caffau E, Ludwig HG, Malherbe JM, Bonifacio P, Steffen M, Monaco L (2013) The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630 nm [O I]-Ni I blend. A&A 554:126

    Google Scholar 

  • Caldeira K, Kasting JF (1992) Susceptibility of the early Earth to irreversible glaciation. Nature 359:226

    Google Scholar 

  • Carter-Bond JC, OBrien DP, Raymond SN (2012) The Compositional Diversity Of Extrasolar Terrestrial Planets. II. Migration simulations. Astrophys J 760:44

    Google Scholar 

  • Catanzarite J, Shao M (2011) The occurrence rate of Earth analog planets orbiting Sun-like stars. ApJ 738:151

    Google Scholar 

  • Chandrasekhar S (1939) An introduction to the study of stellar structure. The University of Chicago Press, Chicago

    Google Scholar 

  • de Bruijne JHJ, Rygl KLJ, Antoja T (2014) EAS Publications Ser. 67, The Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases ed N. Walton et al (Barcelona: EAS Publications Series) 23

    Google Scholar 

  • de Koker N, Karki BB, Stixrude L (2013) Thermodynamics of the MgO-SiO2 liquid system in. Earth's lower mantle from first principles. E&PSL 361:58

    Google Scholar 

  • De Silva GM et al (2006) Chemical homogeneity in the hyades. ApJ 151:455

    Google Scholar 

  • Delgado Mena E, Israelian G, Gonza’lez Herna’ndez JI, Bond JC, Santos NC, Udry S, Mayor M (2010) Chemical clues on the formation of planetary systems: C/O versus Mg/Si for HARPS GTO sample. ApJ 725:2349

    Google Scholar 

  • Driscoll PE, Barnes R (2015) Tidal heating of Earth-like exoplanets around M stars. Astrobiology 15:739

    Google Scholar 

  • Fabbian D, Asplund M, Barklem PS, Carlsson M, Kiselman D (2009) Neutral oxygen spectral line formation revisited with new collisional data: large departures from LTE at low metallicity. A&A 500:1221

    Google Scholar 

  • Gaidos E (2013) Candidate planets in the habitable zones of Kepler stars. ApJ 770:90

    Google Scholar 

  • González Hernández JI, Israelian G, Santos NC, Sousa S, Delgado-Mena E, Neves V, Udry S (2010) Searching for the signatures of terrestrial planets in solar analogs. ApJ 720:1592

    Google Scholar 

  • Grocholski B, Shim SH, Prakapenka VB (2013) Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. J Geophys Res (unpublished data)

    Google Scholar 

  • Hinkel NR, Young PA, Timmes FX, et al (2014) Stellar abundances in the solar neighborhood: the Hypatia catalog. ApJ 148:54

    Google Scholar 

  • Hinkel NR, Mamajek EE, Turnbull MC, et al (2017) A Catalog of Stellar Unified Properties (CATSUP) for 951 FGK-stars within 30 pc. ApJ 848:34

    Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. Earth Planet Sci Lett 237:239251

    Google Scholar 

  • Iglesias CA, Rogers FJ (1996) Updated Opal Opacities. ApJ 464:943

    Google Scholar 

  • Isobe T, Feigelson ED, Akritas MG, Babu GJ (1990) Linear regression in astronomy. ApJ 364:104

    Google Scholar 

  • Kane SR (2014) Habitable zone dependence on stellar parameter uncertainties. ApJ 782:111

    Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108

    Google Scholar 

  • Kopparapu RK, Ramirez RM, SchottelKotte J, et al (2014) ApJL 787:L29

    Google Scholar 

  • Kopparapu RK, Wolf ET, Haqq-Misra J, et al (2016) The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. ApJ 819:84

    Google Scholar 

  • Lammer H, Kasting JF, Chassefie’re E, et al (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139:399

    Google Scholar 

  • Leconte J, Forget F, Charnay B, et al (2013) 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability. A&A 554:A69

    Google Scholar 

  • Madhusudhan N, Lee KKM, Mousis O (2012) A possible carbon-rich interior in super-Earth 55 Cancri e. Astrophys J Lett 759:L40

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223

    Google Scholar 

  • Meynet G, Maeder A (2000) Stellar evolution with rotation. V. Changes in all the outputs of massive star models. A&A 361:101

    Google Scholar 

  • Mishenina TV, Soubiran C, Bienaymé O, Korotin SA, Belik SI, Usenko IA, Kovtyukh VV (2008) Spectroscopic investigation of stars on the lower main sequence. A&A 489:923

    Google Scholar 

  • Neves V, Santos NC, Sousa SG, Correia ACM, Israelian G (2009) Chemical abundances of 451 stars from the HARPS GTO planet search program. A&A 497:563

    Google Scholar 

  • Nissen PE (2013) The carbon-to-oxygen ratio in stars with planets. A&A 552:73

    Google Scholar 

  • Oishi M, Kamaya H (2016) A simple evolutional model of the UV habitable zone and the possibility of persistent life existence: the effects of mass and metallicity. Astrophys Space Sci 361(2):1–6

    Google Scholar 

  • Pagano MD, Young PA, Challa P (2017) The elemental abundances of 518 FGK stars and planetary implications. ApJ in review

    Google Scholar 

  • Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting Sun-like stars. PNAS 110

    Google Scholar 

  • Ramírez I, Allende Prieto C, Lambert DL (2007) Oxygen abundances in nearby stars. A&A 465:271

    Google Scholar 

  • Reiners A (2012) Observations of cool-star magnetic fields. Living Rev Sol Phys 9:1

    Google Scholar 

  • Ricolleau A, Fiquet G, Addad A, Menguy N, Vanni C, Perrillat JP, Daniel I, Cardon H, Guignot N (2008) Analytical transmission microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. Am Mineral 93:144153

    Google Scholar 

  • Ringwood AE (1966) Advances in Earth science. MIT Press, Boston, pp 287–356

    Google Scholar 

  • Rogers FJ, Swenson FJ, Iglesias CA (1996) OPAL equation-of-state tables for astrophysical applications. ApJ 456:902

    Google Scholar 

  • Seager S, Kuchner M, Hier-Majumder CA, Militzer B (2007) Mass-radius relationships for solid exoplanets. ApJ 699:1297

    Google Scholar 

  • Sen S Widgeon SJ Navrotsky A Mera G, Tavakoli A, Ionescu E, Riedelc R (2013) Carbon substitution for oxygen in silicates in planetary interiors. Proc Natl Acad Sci 110(40):15904

    Google Scholar 

  • Shields AL, Bitz CM, Meadows VS, Joshi MM, Robinson TD (2014) Differences IN water vapor radiative transfer among 1D models can significantly affect the inner edge of the habitable zone. ApJ 785:L9

    Google Scholar 

  • Shkolnik EL, Llama J (2017) Signatures of star-planet interactions. arXiv:1712.02814

    Google Scholar 

  • Stishov SM, Popova SV (1961) Geokhimiya 10:837839

    Google Scholar 

  • Stuart A, Ord K (2009) Kendall’s advanced theory of statistics, volume 1: distribution theory. Wiley, New Jersey

    Google Scholar 

  • Takeda Y (2007) Fundamental parameters and elemental abundances of 160 F–G–K stars based on OAO spectrum database. PASJ 59:335

    Google Scholar 

  • Truitt A, Young PA (2017) Expanding the catalog: considering the importance of carbon, magnesium, and neon in the evolution of stars and habitable zones. ApJ 835:87

    Article  ADS  Google Scholar 

  • Truitt A, Young PA, Spacek A, et al (2015) A catalog of stellar evolution profiles and the effects of variable composition on habitable systems. ApJ 804:145

    Google Scholar 

  • Unterborn CT, Kabbes JE, Pigott J, Reaman D, Panero WR (2013) The role of carbon in extrasolar planetary geodynamics and habitability (N.B. correct reference ApJ 793, 194). ApJ arXiv:1311.0024v3

    Google Scholar 

  • Valle G, Dell’Omodarme M, Prada Moroni PG, et al (2014) Uncertainties in grid-based estimates of stellar mass and radius. SCEPtER: Stellar CharactEristics Pisa Estimation gRid. A&A 567:A133

    Google Scholar 

  • Wolf ET, Shields AL, Kopparapu RK, Haqq-Misra J, Toon OB (2017) Constraints on climate and habitability for Earth-like exoplanets determined from a general circulation model. ApJ 837:107

    Google Scholar 

  • Yoshida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B 48:1058710590

    Google Scholar 

  • Young PA, Liebst K, Pagano M (2012) THE impact of stellar abundance variations on stellar habitable zone evolution. ApJ 755:31

    Google Scholar 

  • Young PA, Desch SJ, Anbar AD et al (2014) Astrobiological stoichiometry. Astrobiology 14:603

    Google Scholar 

  • Zahnle KJ, Catling DC (2017) The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. ApJ 843:122

    Google Scholar 

Download references

Acknowledgments

Some of the results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Young .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Young, P.A. (2018). Stellar Composition, Structure and Evolution: Impact on Habitability. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics