Skip to main content

Grazing Incidence X-Ray Reflectivity and Scattering

  • Living reference work entry
  • First Online:

Abstract

The nondestructive evaluation (NDE) technique of grazing incidence X-ray reflectivity is described and set in its historical context. Use of X-ray reflectivity to determine near-surface density is described and the determination of surface interface width presented. It is shown how measurement of the diffuse scatter is necessary in order to distinguish topological surface roughness from compositional grading, as both effects have an identical effect on the true specular scatter. Metrology of single and multiple films is presented, and it is shown how automated fitting of model structures enables the user to extract film thickness with a precision of typically 20 pm. It is demonstrated that the limits of film thickness suitable for such metrology are between 2 nm and 1 μm on flat and smooth substrates. In the context of use of X-ray reflectivity as an NDE technique in a manufacturing environment, there is discussion of approaches to very rapid data collection.

This is a preview of subscription content, log in via an institution.

References

  • Allain M, Benattar JJ, Rieutord F, Robin P (1987) Surface study of Langmuir-Blodgett films by electron microscopy and X-ray reflectivity. Europhys Lett 3:309–314

    Article  Google Scholar 

  • Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1989) Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films. Phys Rev Lett 62:1852–1855

    Article  Google Scholar 

  • Arakawa E, Voegeli W, Matsushita T, Yano YF, Hatano T (2013) Quick X-ray reflectometry in the simultaneous multiple angle-wavelength dispersive mode. J Phys Conf Ser 425:092002

    Article  Google Scholar 

  • Baribeau JM (1993) X-ray reflectometry study of interdiffusion in Si/Ge heterostructures. J Appl Phys 74:3805–3810

    Google Scholar 

  • Berman D, Dikopoltsev A (2004) X-ray reflectometry of thin film layers with increased accuracy. US Patent Application No. US 2004/0131151 A1

    Google Scholar 

  • Bhattacharya M, Mukherjee M, Sanyal M, Geue T, Grenzer J, Pietsch U (2003) Energy dispersive x-ray reflectivity technique to study thermal properties of polymer films. J Appl Phys 94:2882–2887

    Google Scholar 

  • Bjorck M, Andersson G (2007) GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution. J Appl Cryst 40:1174–1178

    Article  Google Scholar 

  • Blundell SJ, Bland JAC (1992) Polarized neutron reflection as a probe of magnetic films and multilayers. Phys Rev B 46:3391–3400

    Google Scholar 

  • Bosio L, Benattar JJ, Rieutford F (1987) X-ray reflectivity of a Langmuir monolayer on water. Rev Phys Appl 22:775–778

    Article  Google Scholar 

  • Bowen DK, Tanner BK (2006) X-ray metrology in semiconductor manufacturing. CRC Press, Taylor and Francis, Bocca Raton, p 279

    Google Scholar 

  • Chason E, Mayer TM (1997) Thin film and surface characterization by specular X-ray reflectivity. Crit Rev Solid State Mater Sci 22:1–67

    Article  Google Scholar 

  • Chason E, Warwick DT (1991) X-ray reflectivity measurements of surface roughness using energy dispersive detection. Mater Res Soc Symp Proc 208:151–356

    Google Scholar 

  • Chason E, Mayer TM, Payne A, Wu D (1992) In-situ energy dispersive X-ray reflectivity measurements of H ion bombardments on SiO2/Si and Si. Appl Phys Lett 60:2353–2355

    Article  Google Scholar 

  • Chen H, Heald MJ (1989) Concentration profiling using X-ray reflectivity – application to Cu-Al interfaces. J Appl Phys 66:1793–1799

    Article  Google Scholar 

  • Clarke J, Pape I, Normile P, Tanner BK (2003) X-ray scattering from uniform and patterned indium tin oxide thin films. J Phys D Appl Phys 36:A209–A213

    Article  Google Scholar 

  • Cole A, Hickey BJ, Hase TPA, Buchanan JDR, Tanner BK (2004) Influence of the interfacial roughness on the electron channelling in Fe/Au(001) multilayers. J Phys Condens Matter 16:1197–1209

    Article  Google Scholar 

  • Cubitt R, Fragneto G (2002) D17: the new reflectometer at the ILL. Appl Phys A Mater Sci Process 74:S329–S331

    Article  Google Scholar 

  • Dane AD, Veldhuis A, de Boer DKG, Leenaers AJG, Buydens LMC (1998) Application of genetic algorithms for characterization of thin layered materials by glancing incidence X-ray reflectometry. Physica B 253:254–268

    Article  Google Scholar 

  • De Boer DKG (1994) Influence of the roughness profile on the specular reflectivity of X-rays and neutrons. Phys Rev B 49:5817–5820

    Article  Google Scholar 

  • De Boer DKG (1996) X-ray scattering and X-ray fluorescence from materials with rough interfaces. Phys Rev B 53:6048–6064

    Article  Google Scholar 

  • Ferrari AC, Li Bassi A, Tanner BK, Stolojan V, Yuan J, Brown LM, Rodil SE, Kleinsorge B, Robertson J (2000) Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Phys Rev B 61:11089–11103

    Article  Google Scholar 

  • Huang TC, Nozieres JP, Speriosu VS, Lefakis H, Gurney BA (1992) X-ray reflectivity analysis of giant-magnetoresistance spin-valve layered structures. Appl Phys Lett 60:1573–1575

    Article  Google Scholar 

  • Huang TC, Nozieres JP, Speriosu VS, Gurney BA, Lefakis H (1993) Effect of annealing on the interfaces of giant-magnetoresistance spin-valve structures. Appl Phys Lett 62:1478–1480

    Article  Google Scholar 

  • Hudson JM, Tanner BK (1992) Characterization of magnetic multilayers by grazing incidence X-ray reflectivity. IEEE Trans Magn 28:2736–2741

    Article  Google Scholar 

  • Hudson JM, Powell AR, Bowen DK, Wormington M, Tanner BK, Kubiak RA, Parker EHC (1992) Thermal degradation of SiGe interfaces studied by X-ray reflectivity and diffraction. Mater Res Soc Symp Proc 239:455–460

    Google Scholar 

  • Isherwood BJ (1977) Characterization of thin-films by X-ray diffraction. GEC J Sci Technol 43:111–124

    Google Scholar 

  • Kiessig H (1930) Interferenz von Röntgenstrahlen an dünnen Schichten [Interference of X-rays on thin layers]. Naturwissenschaften 18:847–848

    Article  Google Scholar 

  • Kiessig H (1931a) Untershungen zur total reflexion von Röntgenstrahlen. Ann Phys 10:715–768

    Article  Google Scholar 

  • Kiessig H (1931b) Interferenz von Röntgenstrahlen an dünnen Schichten. Ann Phys 10:769–788

    Article  Google Scholar 

  • Koenig BW, Kruger S, Orts WJ, Majkrzak CF, Berk NF, Silverston JV, Gawrisch K (1996) Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon crystal. Langmuir 12:1343–1350

    Article  Google Scholar 

  • Kunz K, Reiter J, Gotzelmann A, Stamm M (1993) Model-free analysis of neutron reflectivity data from polymer thin-films with the simulated annealing technique. Macromolecules 26:4316–4323

    Article  Google Scholar 

  • Lewicky R, Herne TM, Tarlov MJ, Satija SK (1998) Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 120:9787–9792

    Article  Google Scholar 

  • LiBassi A, Ferrari AC, Stolojan V, Tanner BK, Robertson J, Brown LM (2000) Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diamond Relat Mater 9:771–776

    Article  Google Scholar 

  • Lucas CA, Hatton PD, Bates S, Ryan TW, Miles S, Tanner BK (1988) Characterization of nanometer-scale epitaxial structures by grazing-incidence X-ray diffraction and specular reflectivity. J Appl Phys 63:1936–1941

    Article  Google Scholar 

  • Martinbouyer G, Dethy B (1982) Determination of the thickness of thin-films by the Kiessig fringe technique. Analusis 10:234–238

    Google Scholar 

  • Meekins JF, Cruddance RG, Gursky H (1986) Optimization of layered synthetic microstructures for narrowband reflectivity at soft X-ray and EUV wavelengths. Appl Optics 25:2757–2763

    Article  Google Scholar 

  • Michaelsen C, Ricardo P, Anders D, Schuster M, Schilling J, Goebel H (2000) Improved graded multilayer mirrors for XRD applications. Adv X-Ray Anal 42:308–320

    Google Scholar 

  • Mizusawa M, Sakurai K (2011) In-situ X-ray reflectivity measurement of polvinyl acetate thin films during glass transition. IOP Conf Ser Mater Sci Eng 24:012013

    Article  Google Scholar 

  • Naudon A, Chihab J, Goudeau P, Mimault J (1989) New apparatus for grazing X-ray reflectometry in the angle-resolved dispersive mode. J Appl Cryst 22:460–464

    Article  Google Scholar 

  • Nelson A (2006) Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J Appl Cryst 39:273–276

    Article  Google Scholar 

  • Paci B, Generosi A, Rossi Albertini V, Perfetti P, de Bettignies R, Leroy J, Firon M, Sentein C (2006) Controlling photoinduced degradation in plastic photovoltaic cells: a time-resolved energy dispersive X-ray reflectometry study. Appl Phys Lett 89:043507

    Article  Google Scholar 

  • Pape I, Tanner BK, Wormington M (1999) Grazing incidence X-ray scattering measurement of silicate glass surfaces. J Non-Cryst Solids 248:75–83

    Article  Google Scholar 

  • Pape I, Lawrence CW, Roberts SG, Briggs GAD, Kolosov OV, Hey AW, Paine CF, Tanner BK (2000) Evaluation of polishing damage in alumina. Philos Mag A 80:1913–1934

    Article  Google Scholar 

  • Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359–369

    Article  Google Scholar 

  • Penfold J (1991) Instrumentation for neutron reflectivity. Physica B 173:1–10

    Article  Google Scholar 

  • Penfold J (2002) Neutron reflectivity and soft condensed matter. Curr Opin Colloid Interface Sci 7:139–147

    Article  Google Scholar 

  • Pym ATG, Lamperti A, Tanner BK, Dimopoulos T, Rührig M, Wecker J (2006) Interface sharpening in CoFeB magnetic tunnel junctions. Appl Phys Lett 88:162505

    Article  Google Scholar 

  • Regan MJ, Kawamoto EH, Lee S, Pershan PS, Maskil N, Deutsch M, Magnussen OM, Ocko BM, Berman LE (1995) Surface layering in liquid gallium. Phys Rev Lett 75:2498–2501

    Article  Google Scholar 

  • Rosen DL, Brown D, Gilfrith J, Burkhalter P (1988) Multilayer roughness evaluated by X-ray reflectivity. J Appl Cryst 21:136–144

    Article  Google Scholar 

  • Satchell N, Witt JDS, Burnell G, Curran PJ, Kinane CJ, Charlton TR, Langridge S, Cooper JFK (2017) Probing the spiral magnetic phase in 6 nm textured erbium using polarised neutron reflectometry. J Phys C Condens Matter 29:055801

    Article  Google Scholar 

  • Schuster M, Goebel H (1995) Parallel-beam coupling into channel-cut monochromators using curved graded multilayers. J Phys D Appl Phys 28:A270–A275

    Article  Google Scholar 

  • Schuster M, Goebel H (1996) Calculation of improvement to HRXRD system through-put using curved graded multilayers. J Phys D Appl Phys 29:1677–1679

    Article  Google Scholar 

  • Schuster M, Goebel H, Michaelsen C, Bormann R (2001) X-ray analysis apparatus with a graded multilayer mirror. US Patent US6226349

    Google Scholar 

  • Shindler JD, Suter RM (1992) Moderate resolution X-ray reflectivity. Rev Sci Instrum 63:5343–5347

    Article  Google Scholar 

  • Sinha SK, Sirota EB, Garoff S, Stanley HB (1988) X-ray and neutron scattering from rough surfaces. Phys Rev B 38:2297–2311

    Article  Google Scholar 

  • Soles CL, Lee HJ, Hedden RC, Liu DW, Bauer BJ, Wu WL (2003) X-ray porosimetry as a metrology to characterize the pore structure of low-k dielectric films. In: Seiler DG, Diebold AC, Shaffner TJ, McDonald R, Zollner S, Khosla RP, Secula EM (eds) Characterization and metrology for ULSI technology. AIP conference series 683. American Institute of Physics, Melville, pp 576–580

    Google Scholar 

  • Solookinejad G, Rozatian ASH, Habibi MH (2012) Investigation of sol-gel grown ZnO thin film: wavelet analysis and simulated annealing optimized X-ray reflectivity. In J Mod Phys 26:1250070

    Article  Google Scholar 

  • Stevens KH, Braueninger H, Kaase H, Metzdorf J (1986) Reflectivity measurements in the vacuum ultraviolet wavelength range on technical surfaces for the Wolter I telescope on board the X-ray astronomy satellite ROSAT. Astrophys Space Sci 125:169–174

    Article  Google Scholar 

  • Stoev K, Sakurai K (2011) Aberration effects in quick X-ray reflectivity of curved samples. IOP Conf Ser Mater Sci Eng 24:012014

    Article  Google Scholar 

  • Tanner BK (2015) X-ray scattering from spintronic structures. In: Xu Y, Awschalom DD, Nitta J (eds) Handbook of spintronics. Springer Science and Business Media, Dordrecht, pp 919–945

    Google Scholar 

  • Tanner BK, Miles SJ, Bowen DK, Hart L, Loxley N (1991) X-ray reflectometry from semiconductor surfaces and interfaces. Mater Res Soc Symp Proc 208:345–350

    Article  Google Scholar 

  • Tanner BK, Allwood DA, Mason NJ (2001) Kinetics of native oxide growth on epiready GaAs. Mater Sci Eng B 80:99–103

    Article  Google Scholar 

  • Tiilikainen J, Bosund V, Mattila M, Hakkarainen T, Sormunen J, Lipsanen H (2007a) Fitness function and nonunique solutions in X-ray reflectivity curve fitting: crosserror between surface roughness and mass density. J Phys D Appl Phys 40:4259–4263

    Article  Google Scholar 

  • Tiilikainen J, Bosund V, Tilli J-M, Sormunen J, Mattila M, Hakkarainen T, Lipsanen H (2007b) Genetic algorithm using independent component analysis in X-ray reflectivity curve fitting of periodic layer structures. J Phys D Appl Phys 40:6000–6004

    Article  Google Scholar 

  • Toney MF, Brennan S (1989) Measurements of carbon thin-films by X-ray reflectivity. J Appl Phys 66:1861–1863

    Article  Google Scholar 

  • Troughton JG, Downs P, Price R, Atkinson D (2017) Densification of a-IGZP with low-temperature annealing for flexible electronics applications. Appl Phys Lett 110:011903

    Article  Google Scholar 

  • Ulyanenkov A, Sobolewski S (2005) Extended genetic algorithm: application to X-ray analysis. J Phys D Appl Phys 38:A235–AA23

    Article  Google Scholar 

  • van der Lee AD, Salah F, Harzallah B (2007) A comparison of modern data analysis methods for X-ray and neutron specular reflectivity data. J Appl Cryst 40:820–833

    Article  Google Scholar 

  • Vaz CAF, Lauhoff G, Bland JAC, Langridge S, Bucknall D, Penfold J, Clarke J, Halder SK, Tanner BK (2007) Interface dependent magnetic moments in Cu/Co,Ni/Cu/Si(001) epitaxial structures. J Magn Magn Mater 313:89–97

    Article  Google Scholar 

  • Veldhuis SA, Brinks P, Stawski TM, Gobel OF, ten Elshof JE (2014) A facile method for the density determination of ceramic thin films using X-ray reflectivity. J Sol-Gel Sci Technol 71:118–128

    Google Scholar 

  • Voegeli W, Matsushita T, Arakawa E, Shirasawa T, Takahashi T, Yano YF (2013) A method for measuring the specular X-ray reflectivity with millisecond time resolution. J Phys Conf Ser 425:092003

    Article  Google Scholar 

  • Voegeli W, Kamezawa C, Arakawa E, Yano YF, Shirasawa TA, Takahashia T, Matsushita T (2017) A quick convergent-beam laboratory X-ray reflectometer using a simultaneous multiple-angle dispersive geometry. J Appl Cryst 50:570–575

    Article  Google Scholar 

  • Wainfan N, Parratt LG (1960) X-ray reflection studies of the anneal and oxidation of some thin solid films. J Appl Phys 31:1331–1337

    Google Scholar 

  • Wainfan N, Scott NJ, Parratt LG (1959) Density measurements of some thin copper films. J Appl Phys 30:1604–1609

    Article  Google Scholar 

  • Wormington M, Pape I, Hase TPA, Tanner BK, Bowen DK (1996) Evidence of grading at polished surfaces from grazing incidence X-ray scattering. Philos Mag Lett 74:211–216

    Article  Google Scholar 

  • Wormington M, Panaccione C, Matney KM, Bowen DK (1999) Characterization of structures from X-ray scattering data using genetic algorithms. Philos Trans R Soc Lond A 357:2827–2848

    Article  Google Scholar 

  • Woronick SC, Yang BX, Krol A, Kao YH, Munekata H, Chang LL, Phillips JC (1987) X-ray reflectivity of InAs/GaAs heterostructures with surface and interface roughness. J Phys 48:51–56

    Article  Google Scholar 

  • Yokhin B, Dikopoltsev A, Mazor I, Berman D (2003) X-ray reflectometer. US Patent No. US 6,512,814 B2

    Google Scholar 

  • Yoneda Y (1963) Anomalous surface reflection of X-rays. Phys Rev 131:2010–2013

    Article  Google Scholar 

  • You H, Chiarello RP, Kim HK, Vandervoort KG (1993) X-ray reflectivity and scanning tunnelling microscopy study of kinetic roughening of sputter deposited gold films during growth. Phys Rev Lett 70:2900–2903

    Article  Google Scholar 

  • Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123:213–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Tanner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tanner, B.K. (2018). Grazing Incidence X-Ray Reflectivity and Scattering. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics