Skip to main content

Oxygen Saturation Monitoring in Neonatal Period

  • Reference work entry
  • First Online:
Neonatology
  • 164 Accesses

Abstract

Oxygen (O2) is a potent drug that is often used inappropriately in the clinical environment. Its administration needs to be improved in neonatal care. Healthcare providers never induce hypoxemia, and the same is not true for hyperoxemia. Clinical signs (cyanosis and tongue color) are of no value to detect hypoxemia and hyperoxemia. Pulse oximetry (SpO2) is the most important method for monitoring O2 saturation. The hazards of hyperoxemia and hyperoxia should be avoided or minimized. Undesired effects of maternal and fetal oxidative stress and short- and long-term O2 therapy involve every organ system and many genes. The SpO2 in normal newborns and in those who are treated with CPAP or assisted ventilation breathing room air (FiO2 0.21) is 95–100%. The intention to “target SpO2” in infants breathing supplemental O2 should not include values associated with potential hyperoxia nor possible hypoxia and also must aim to avoid recurring periods of hypoxemia-hyperoxemia-reperfusion. It is impossible to maintain newborn infants within narrow SpO2 target ranges all the time. Choosing wider intermediate SpO2 ranges for treatment allows for easier care and better compliance, and such ranges have been associated with a decreased rate of severe ROP, without an increased morbidity or mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed SJ, Rich W, Finer NN (2010) The effect of averaging time on oximetry values in the premature infant. Pediatrics 125:e115–e121

    Article  Google Scholar 

  • Arawiran J, Curry J, Welde L, Alpan G (2015) Sojourn in excessively high oxygen saturation ranges in individual, very low-birthweight neonates. Acta Paediatr 104(2):e51–e56

    Article  Google Scholar 

  • Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM (2003) Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med 349(10):959–967

    Article  CAS  Google Scholar 

  • Bancalari E, Claure N (2012) Control of oxygenation during mechanical ventilation in the premature infant. Clin Perinatol 39:563–572

    Article  Google Scholar 

  • Baquero H, Alviz R, Castillo A, Neira F, Sola A (2011) Avoiding hyperoxemia during neonatal resuscitation: time to response of different SpO2 monitors. Acta Paediatr 100(4):515–518

    Article  Google Scholar 

  • Bizzarro MJ, Li FY, Katz K, Shabanova V, Ehrenkranz RA, Bhandari V (2014) Temporal quantification of oxygen saturation ranges: an effort to reduce hyperoxia in the neonatal intensive care unit. J Perinatol 34(1):33–38

    Article  CAS  Google Scholar 

  • Carlo WA, Finer NN, Walsh MC, SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network et al (2010) Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362(21):1959–1969

    Article  CAS  Google Scholar 

  • Castillo A, Sola A, Baquero H et al (2008) Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics 121(5):882–889

    Article  Google Scholar 

  • Castillo A, Deulofeut R, Critz A, Sola A (2011) Prevention of retinopathy of prematurity in preterm infants through changes in clinical practice and SpO2 technology. Acta Paediatr 100(2):188–192

    Article  Google Scholar 

  • Chow LC, Wright KW, Sola A, CSMC Oxygen Administration Study Group (2003) Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111(2):339–345

    Article  Google Scholar 

  • Clarke A, Yeomans E, Elsayed K, Medhurst A, Berger P, Skuza E, Tan K (2015) A randomised crossover trial of clinical algorithm for oxygen saturation targeting in preterm infants with frequent desaturation episodes. Neonatology 107(2):130–136

    Article  Google Scholar 

  • Claure N, Bancalari E (2013) Role of automation in neonatal respiratory support. J Perinat Med 41(1):115–118

    Article  Google Scholar 

  • Claure N, Bancalari E (2015) Closed-loop control of inspired oxygen in premature infants. Semin Fetal Neonatal Med 20(3):198–204

    Article  Google Scholar 

  • Comroe JH Jr, Bahnson ER, Coates EO Jr (1950) Mental changes occurring in chronically anoxemic patients during oxygen therapy. J Am Med Assoc 143(12):1044–1048

    Article  Google Scholar 

  • Darlow BA, Marschner SL, Donoghoe M, Benefits Of Oxygen Saturation Targeting-New Zealand (BOOST-NZ) Collaborative Group et al (2014) Randomized controlled trial of oxygen saturation targets in very preterm infants: two year outcomes. J Pediatr 165(1):30–35, e2

    Article  Google Scholar 

  • Dawson JA, Kamlin CO, Vento M et al (2010) Defining the reference range for oxygen saturation for infants after birth. Pediatrics 125(6):e1340–e1347

    Article  Google Scholar 

  • Dawson JA, Vento M, Finer NN et al (2012) Managing oxygen therapy during delivery room stabilization of preterm infants. J Pediatr 160(1):158–161

    Article  Google Scholar 

  • de Wahl Granelli A, Wennergren M, Sandberg K, Mellander M, Bejlum C, Ingana L et al (2009) Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ 338:a3037

    Article  Google Scholar 

  • Deulofeut R, Critz A, Adams-Chapman I, Sola A (2006) Avoiding hyperoxia in infants < or 1⁄4 1250 g is associated with improved short- and long-term outcomes. J Perinatol 26(11):700–705

    Article  CAS  Google Scholar 

  • Deulofeut R, Dudell G, Sola A (2007) Treatment-by-gender effect when aiming to avoid hyperoxia in preterm infants in the NICU. Acta Paediatr 96(7):990–994

    Article  Google Scholar 

  • Eghbalian F (2014) A comparison of supine and prone positioning on improves arterial oxygenation in premature neonates. J Neonatal Perinatal Med 7(4):273–277

    CAS  PubMed  Google Scholar 

  • Ewer AK, Middleton LJ, Furmston AT, Bhoyar A, Daniels JP, Thangaratinam S et al (2011) Pulse oximetry screening for congenital heart defects in newborn infants (PulseOx): a test accuracy study. Lancet 378:785–794

    Article  Google Scholar 

  • Farrow KN, Lee KJ, Perez M et al (2012) Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells. Antioxid Redox Signal 17(3):460–470

    Article  CAS  Google Scholar 

  • Hagadorn JI, Furey AM, Nghiem TH, AVIOx Study Group et al (2006) Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks’ gestation: the AVIOx study. Pediatrics 118(4):1574–1582

    Article  Google Scholar 

  • Hamel MS, Anderson BL, Rouse DJ (2014) Oxygen for intrauterine resuscitation: of unproved benefit and potentially harmful. Am J Obstet Gynecol 211(2):124–127

    Article  Google Scholar 

  • Hassan MA, Mendler M, Maurer M, Waitz M, Huang L, Hummler HD (2015) Reliability of pulse oximetry during cardiopulmonary resuscitation in a piglet model of neonatal cardiac arrest. Neonatology 107(2):113–119

    Article  CAS  Google Scholar 

  • Hay WW Jr, Rodden DJ, Collins SM, Melara DL, Hale KA, Fashaw LM (2002) Reliability of conventional and new pulse oximetry in neonatal patients. J Perinatol 22(5):360–366

    Article  Google Scholar 

  • Kaindl AM, Sifringer M, Zabel C et al (2006) Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ 13(7):1097–1109

    Article  CAS  Google Scholar 

  • Ketko AK, Martin CM, Nemshak MA, Niedner M, Vartanian RJ (2015) Balancing the tension between hyperoxia prevention and alarm fatigue in the NICU. Pediatrics 136(2):e496–e504

    Article  Google Scholar 

  • Klimova NG, Hanna N, Peltier MR (2013) Effect of oxygen tension on bacteria-stimulated cytokine production by fetal membranes. J Perinat Med 41(5):595–603

    Article  CAS  Google Scholar 

  • Klingel ML, Patel SV (2013) A meta-analysis of the effect of inspired oxygen concentration on the incidence of surgical site infection following cesarean section. Int J Obstet Anesth 22(2):104–112

    Article  CAS  Google Scholar 

  • Lakshminrusimha S, Manja V, Mathew B, Suresh GK (2015) Oxygen targeting in preterm infants: a physiological interpretation. J Perinatol 35(1):8–15

    Article  CAS  Google Scholar 

  • Laman M, Ripa P, Vince J, Tefuarani N (2005) Can clinical signs predict hypoxaemia in Papua New Guinean children with moderate and severe pneumonia? Ann Trop Paediatr 25:23–27

    Article  Google Scholar 

  • Lim K, Wheeler KI, Gale TJ et al (2014) Oxygen saturation targeting in preterm infants receiving continuous positive airway pressure. J Pediatr 164(4):730–736.e1

    Article  Google Scholar 

  • Lim K, Wheeler KI, Jackson HD, Sadeghi Fathabadi O, Gale TJ, Dargaville PA (2015) Lost without trace: oximetry signal dropout in preterm infants. Arch Dis Child Fetal Neonatal Ed 100(5):F436–F438

    Article  Google Scholar 

  • Lye P, Bloise E, Dunk C et al (2013) Effect of oxygen on multidrug resistance in the first trimester human placenta. Placenta 34(9):817–823

    Article  CAS  Google Scholar 

  • Manja V, Lakshminrusimha S, Cook DJ (2015) Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr 169(4):332–340

    Article  Google Scholar 

  • Narayen IC, Smit M, van Zwet EW, Dawson JA, Blom NA, te Pas AB (2015) Low signal quality pulse oximetry measurements in newborn infants are reliable for oxygen saturation but underestimate heart rate. Acta Paediatr 104(4):e158–e163

    Article  Google Scholar 

  • Niermeyer S, Yang P, Shanmina D, Zhuang J, Moore LG (1995) Arterial oxygen saturation in Tibetan and Han infants born in Lhasa, Tibet. N Engl J Med 333:1248–1252

    Article  CAS  Google Scholar 

  • Noh EJ, Kim YH, Cho MK et al (2014) Comparison of oxidative stress markers in umbilical cord blood after vaginal and cesarean delivery. Obstet Gynecol Sci 57(2):109–114

    Article  Google Scholar 

  • Paul M (2015) Oxygen administration to preterm neonates in the delivery room: minimizing oxidative stress. Adv Neonatal Care 15(2):94–103

    Article  Google Scholar 

  • Phibbs RH (1977) Oxygen therapy: a continuing hazard to the premature infant. Anesthesiology 47(6):486–487

    Article  CAS  Google Scholar 

  • Polin RA, Bateman DA, Sahni R (2014) Pulse oximetry in very low birth weight infants. Clin Perinatol 41(4):1017–1032

    Article  Google Scholar 

  • Rabi Y, Rabi D, Yee W (2007) Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation 72(3):353–363

    Article  Google Scholar 

  • Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigsknecht C, Swartz D, Ma CX, Mathew B, Nair J, Lakshminrusimha S (2015) Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology 107(3):161–166

    Article  CAS  Google Scholar 

  • Samiee-Zafarghandy S, Saugstad OD, Fusch C (2015) Do we have an answer when it comes to providing extremely preterm infants with optimal target oxygen saturation? Acta Paediatr 104(3):e130–e133

    Article  Google Scholar 

  • Saugstad OD (2007) Take a breath—but do not add oxygen (if not needed). Acta Paediatr 96(6):798–800

    Article  Google Scholar 

  • Saugstad OD, Aune D (2014) Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology 105(1):55–63

    Article  CAS  Google Scholar 

  • Saugstad OD, Aune D, Aguar M, Kapadia V, Finer N, Vento M (2014) Systematic review and meta-analysis of optimal initial fraction of oxygen levels in the delivery room at <32 weeks. Acta Paediatr 103(7):744–751

    PubMed  Google Scholar 

  • Schmidt B, Whyte RK, Asztalos EV, Canadian Oxygen Trial (COT) Group et al (2013) Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA 309(20):2111–2120

    Article  CAS  Google Scholar 

  • Schmidt B, Whyte RK, Roberts RS (2014a) Trade-off between lower or higher oxygen saturations for extremely preterm infants: the first benefits of oxygen saturation targeting (BOOST) II trial reports its primary outcome. J Pediatr 165(1):6–8

    Article  Google Scholar 

  • Schmidt B, Roberts RS, Whyte RK, Canadian Oxygen Trial Group et al (2014b) Impact of study oximeter masking algorithm on titration of oxygen therapy in the Canadian oxygen trial. J Pediatr 165(4):666–671, e2

    Article  CAS  Google Scholar 

  • Silverman WA (1980) Retrolental fibroplasia: a modern parable. Grune & Stratton, New York

    Google Scholar 

  • Sola A (2008) Oxygen in neonatal anesthesia: friend or foe? Curr Opin Anaesthesiol 21(3):332–339

    Article  Google Scholar 

  • Sola A (2015) Oxygen saturation in the newborn and the importance of avoiding hyperoxia-induced damage. NeoReviews 16:e393. https://doi.org/10.1542/neo.16-7-e393

    Article  Google Scholar 

  • Sola A, Zuluaga C (2013) Oxygen saturation targets and retinopathy of prematurity. J AAPOS 17:650–652

    Article  Google Scholar 

  • Sola A, Rogido MR, Deulofeut R (2007) Oxygen as a neonatal health hazard: call for détente in clinical practice. Acta Paediatr 96(6):801–812

    Article  Google Scholar 

  • Sola A, Saldeño YP, Favareto V (2008) Clinical practices in neonatal oxygenation: where have we failed? what can we do? J Perinatol 28(Suppl 1):S28–S34

    Article  Google Scholar 

  • Sola A, Golombek SG, Montes Bueno MT et al (2014) Safe oxygen saturation targeting and monitoring in preterm infants: can we avoid hypoxia and hyperoxia? Acta Paediatr 103(10):1009–1018

    Article  Google Scholar 

  • Spector LG, Klebanoff MA, Feusner JH, Georgieff MK, Ross JA (2005) Childhood cancer following neonatal oxygen supplementation. J Pediatr 147(1):27–31

    Article  Google Scholar 

  • Stenson BJ, Tarnow-Mordi WO, Darlow BA, BOOST II United Kingdom Collaborative Group; BOOST II Australia Collaborative Group; BOOST II New Zealand Collaborative Group et al (2013) Oxygen saturation and outcomes in preterm infants. N Engl J Med 368(22):2094–2104

    Article  Google Scholar 

  • Suwattanaphim S, Yodavuhd S, Puangsa-art SJ (2015) Time duration of oxygen adaptation immediately after birth; monitoring by pulse oximeter in perinatal period of the infants at Charoenkrung Pracharak Hospital. J Med Assoc Thai 98(7):656–663

    PubMed  Google Scholar 

  • Synnes A, Miller SP (2015) Oxygen therapy for preterm neonates: the elusive optimal target. JAMA Pediatr 169(4):311–313

    Article  Google Scholar 

  • Terrill PI, Dakin C, Hughes I, Yuill M, Parsley C (2015) Nocturnal oxygen saturation profiles of healthy term infants. Arch Dis Child 100(1):18–23

    Article  Google Scholar 

  • Thomson L, Paton J (2014) Oxygen toxicity. Paediatr Respir Rev 15(2):120–123

    PubMed  Google Scholar 

  • Vagedes J, Poets CF, Dietz K (2013) Averaging time, desaturation level, duration and extent. Arch Dis Child Fetal Neonatal Ed 98:F265–6

    Article  Google Scholar 

  • Van Den Brenk HA, Jamieson D (1962) Potentiation by anaesthetics of brain damage due to breathing high-pressure oxygen in mammals. Nature 194:777–778

    Article  CAS  Google Scholar 

  • van Kaam AH, Hummler HD, Wilinska M, Swietlinski J, Lal MK, te Pas AB, Lista G, Gupta S et al (2015) Automated versus manual oxygen control with different saturation targets and modes of respiratory support in preterm infants. J Pediatr 167(3):545–550.e1-2

    Article  Google Scholar 

  • Vento M (2014) Oxygen supplementation in the neonatal period: changing the paradigm. Neonatology 105(4):323–331

    Article  CAS  Google Scholar 

  • Vento M, Cubells E, Escobar JJ et al (2013) Oxygen saturation after birth in preterm infants treated with continuous positive airway pressure and air: assessment of gender differences and comparison with a published nomogram. Arch Dis Child Fetal Neonatal Ed 98(3):F228–F232

    Article  Google Scholar 

  • Wellmann S, Bührer C, Schmitz T (2014) Focal necrosis and disturbed myelination in the white matter of newborn infants: a tale of too much or too little oxygen. Front Pediatr 2(14):143

    PubMed  Google Scholar 

  • Wollen EJ, Kwinta P, Bik-Multanowski M, Madetko-Talowska A, Sejersted Y, Wright MS et al (2014) Hypoxia-reoxygenation affects whole-genome expression in the newborn eye. Invest Ophthalmol Vis Sci 55(3):1393–1401

    Article  CAS  Google Scholar 

  • Yalcin S, Aydoğan H, Kucuk A et al (2013) Supplemental oxygen in elective cesarean section under spinal anesthesia: handle the sword with care [in Spanish]. Rev Bras Anestesiol 63(5):393–397

    Article  Google Scholar 

  • Zapata J, Gómez JJ, Araque Campo R, Matiz Rubio A, Sola A (2014) A randomised controlled trial of an automated oxygen delivery algorithm for preterm neonates receiving supplemental oxygen without mechanical ventilation. Acta Paediatr 103(9):928–33

    Article  CAS  Google Scholar 

  • Zhang L, Mendoza-Sassi R, Santos JC, Lau J (2011) Accuracy of symptoms and signs in predicting hypoxaemia among young children with acute respiratory infection: a meta-analysis. Int J Tuberc Lung Dis 15:317–325

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Augusto Sola or Sergio Golombek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sola, A., Golombek, S. (2018). Oxygen Saturation Monitoring in Neonatal Period. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_291

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_291

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics