Skip to main content

Neuromuscular Disorders in Newborns

  • Reference work entry
  • First Online:
Neonatology

Abstract

Neuromuscular disorders (NDs) are important causes of neonatal weakness and hypotonia. They are pathogenetically related to primitive disorders of the motor unit. They can be acquired or genetically determined, and inherited according to various models of inheritance. NDs with neonatal onset have great clinical variability in severity ranging from fatal to mild pictures. Weakness, generalized or localized to a peculiar district (i.e., facial muscles), and hypotonia are cardinal features. Diagnostic workup includes serum creatine kinase level analysis, motor nerve conduction investigation, electromyography, and muscle biopsy. In neonates indications for muscle biopsy should be carefully evaluated as several limitations there exist. It could be considered in those patients in whom diagnosis is still lacking in spite of several laboratory investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barth PG (1993) Pontocerebellar hypoplasia. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev 15:411–422

    Article  CAS  Google Scholar 

  • Beytía Mde L, Dekomien G, Hoffjan S, Haug V, Anastasopoulos C, Kirschner J (2014) High creatine kinase levels and white matter changes: clinical and genetic spectrum of congenital muscular dystrophies with laminin alpha-2 deficiency. Mol Cell Probes 28(4):118–122

    Article  Google Scholar 

  • Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN (2014) Members of international standard of care committee for congenital muscular dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 24(4):289–311

    Article  Google Scholar 

  • Buonocore G, Balestri P, Toti P et al (1993) A new case of severe congenital nemaline myopathy. Acta Paediatr 82:1082–1084

    Article  CAS  Google Scholar 

  • Carré A, Empey C (2016) Review of Spinal Muscular Atrophy (SMA) for prenatal and pediatric genetic counselors. J Genet Couns 25(1):32–43

    Article  Google Scholar 

  • D’Amico A, Mercuri E, Tiziano FD, Bertini E (2011) Spinal muscular atrophy. Orphanet J Rare Dis 6:71

    Article  Google Scholar 

  • Deymeer F, Serdaroglu R, Ozdemir C (1999) Familial infantile myasthenia: confusion in terminology. Neuromuscul Disord 9:129–130

    Article  CAS  Google Scholar 

  • Dubowitz V (1995) Muscle disorders in childhood. Saunders, London

    Google Scholar 

  • Engel AG, Shen XM, Selcen D, Sine SM (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14(4):420–434

    Article  Google Scholar 

  • Fenichel GM (2009) Clinical pediatric neurology. A signs and symptoms approach, Chapter 6. Saunder Elservier, Philadelphia

    Google Scholar 

  • Godfrey C, Foley AR, Clement E, Muntoni F (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21(3):278–285

    Article  CAS  Google Scholar 

  • Guillot N, Cuisset JM, Cuvellier JC, Hurtevent JF, Joriot S, Vallee L (2008) Unusual clinical features in infantile Spinal Muscular Atrophies. Brain Dev 30(3):169–178

    Article  Google Scholar 

  • Hacohen Y, Jacobson LW, Byrne S, Norwood F, Lall A, Robb S, Dilena R, Fumagalli M, Born AP, Clarke D, Lim M, Vincent A, Jungbluth H (2014) Fetal acetylcholine receptor inactivation syndrome: a myopathy due to maternal antibodies. Neurol Neuroimmunol Neuroinflamm 2(1):e57

    Article  Google Scholar 

  • Jungbluth H, Davis MR, Muller C et al (2004) Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul Disord 14:785–790

    Article  Google Scholar 

  • Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26

    Article  Google Scholar 

  • Jungbluth H, Sewry CA, Muntoni F (2011) Core myopathies. Semin Pediatr Neurol 18(4):239–249. Review

    Article  Google Scholar 

  • Kaindl AM, Ruschendorf F, Krause S et al (2004) Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 41:842–848

    Article  CAS  Google Scholar 

  • Kaindl AM, Guenther UP, Rudnik-Schöneborn S et al (2008) Spinal muscular atrophy with respiratory distress type 1 (SMARD1). J Child Neurol 23:199–204

    Article  Google Scholar 

  • Kirschner J (2013) Congenital muscular dystrophies. Handb Clin Neurol 113:1377–1385

    Article  Google Scholar 

  • Kissiedu J, Prayson RA (2016) Congenital fiber type disproportion. J Clin Neurosci 26:136–7

    Article  Google Scholar 

  • Laing NG, Sewry CA, Lamont P (2007) Congenital myopathies. Handb Clin Neurol 86:1–33

    Article  Google Scholar 

  • Lee CY (2014) Walker-Warburg syndrome: rare congenital muscular dystrophy associated with brain and eye abnormalities. Hong Kong Med J 20(6):556.e4–556.e5

    Article  CAS  Google Scholar 

  • Lefebvre S, Biirglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 13(80):1–5

    Google Scholar 

  • Lim JA, Li L, Raben N (2014) Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 6:177

    Article  Google Scholar 

  • MacLeod MJ, Taylor JE, Lunt PW et al (1999) Prenatal onset spinal muscular atrophy. Eur J Paediatr Neurol 3:65–72

    Article  CAS  Google Scholar 

  • Meola G, Cardani R (2015) Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 1852(4):594–606

    Article  CAS  Google Scholar 

  • Mercuri E, Dubowitz V (2008) Neuromuscular disorders. In: Levine MI, Chervenak FA (eds) Fetal and neonatal neurology and neurosurgery. Churchill Livingston Elsevier, Philadelphia, pp 792–809

    Google Scholar 

  • Mercuri E, Longman C (2005) Congenital muscular dystrophy. Pediatr Ann 34:564–568

    Article  Google Scholar 

  • Messina MF, Messina S, Gaeta M, Rodolico C, Salpietro Damiano AM, Lombardo F, Crisafulli G, De Luca F (2012) Infantile spinal muscular atrophy with respiratory distress type I (SMARD 1): an atypical phenotype and review of the literature. Eur J Paediatr Neurol 16(1):90–94

    Article  Google Scholar 

  • Middleton LT (1995) Report on the 34th ENMC international workshop – congenital myasthenia syndromes. Neuromuscul Disord 6:133–136

    Article  Google Scholar 

  • Midelfart Hoff J, Midelfart A (2015) Maternal myasthenia gravis: a cause for arthrogryposis multiplex congenita. J Child Orthop 9(6):433–5

    Article  Google Scholar 

  • Muntoni F, Voit T (2005) 133rd ENMC international workshop on congenital muscular dystrophy (IXth international CMD workshop) 21–23 January 2005, Naarden. The Netherlands. Neuromuscul Disord 15:794–801

    Article  CAS  Google Scholar 

  • Muntoni F, Torelli S, Brockington M (2008) Muscular dystrophies due to glycosylation defects. Neurotherapeutics 5:627–632

    Article  CAS  Google Scholar 

  • Nogajski JH, Kiernan MC, Ouvrier RA, Andrews PI et al (2009) Congenital myasthenic syndromes. J Clin Neurosci 16:1–11

    Article  Google Scholar 

  • North K (2008) What’s new in congenital myopathies? Neuromuscul Disord 18:433–442

    Article  Google Scholar 

  • North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, Amburgey K, Quijano-Roy S, Beggs AH, Sewry C, Laing NG, Bönnemann CG (2014) International standard of care committee for congenital myopathies. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 24(2):97–116

    Article  Google Scholar 

  • Ohno K, Anlar B, Engel AG (1999) Congenital myasthenic syndrome caused by a mutation in the Ets binding site of the promoter region of the acetylcoline receptor e subunit gene. Neuromuscul Disord 9:131–135

    Article  CAS  Google Scholar 

  • Ravenscroft G, Miyatake S, Lehtokari VL et al (2013) Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 93(1):6–18

    Article  CAS  Google Scholar 

  • Reed UC (2009a) Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. Arq Neuropsiquiatr 67:144–168

    Article  Google Scholar 

  • Reed UC (2009b) Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. Arq Neuropsiquiatr 67:343–362

    Article  Google Scholar 

  • Romero NB, Clarke NF (2013) Congenital myopathies. Handb Clin Neurol 113:1321–1336. Review

    Article  Google Scholar 

  • Rudnick-Schoneborn FR, Hahnen E et al (1996) Clinical spectrum and diagnostic criteria of infantile spinal muscular atrophy: further delineation on the basis of 5MN deletion findings. Neuropediatrics 27:8–15

    Article  Google Scholar 

  • Rudnik-Schöneborn S, Sztriha L, Aithala GR, Houge G, Laegreid LM, Seeger J, Huppke M, Wirth B, Zerres K (2003) Extended phenotype of pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am J Med Genet A 117A(1):10–17

    Article  Google Scholar 

  • Ryan MM, Schnell C, Strickland CD et al (2001) Nemaline myopathy: a clinical study of 143 cases. Ann Neurol 50:312–320

    Article  CAS  Google Scholar 

  • Sharma MC, Jain D, Sarkar C et al (2009) Congenital myopathies-a comprehensive update of recent advancements. Acta Neurol Scand 119:281–292

    Article  CAS  Google Scholar 

  • Tanner SM, Laporte J, Guiraurd-Chaumeil C et al (1998) Confirmation of prenatal diagnosis results of X-linked recessive myotubular myopathy by mutational screening and description of three new mutations in the MTM1 gene. Hum Mutat 11:62–68

    Article  CAS  Google Scholar 

  • Voit T (1998) Congenital muscular dystrophies: 1997 update. Brain Dev 20:65–74

    Article  CAS  Google Scholar 

  • Volpe J (2008a) Neuromuscular disorders: levels above the lower motor neuron to the neuromuscular junction. In: Volpe J (ed) Neurology of the newborn. Saunders Elsevier, Philadelphia, pp 767–800

    Google Scholar 

  • Volpe J (2008b) Neuromuscular disorders: muscle involvement and restricted disorders. In: Volpe J (ed) Neurology of the newborn. Saunders Elsevier, Philadelphia, pp 801–840

    Google Scholar 

  • Wallgren-Pettersson C, Laing NG (1996) Nemaline myopathy. Neuromuscul Disord 6:389–391

    Article  CAS  Google Scholar 

  • Wallgren-Pettersson C (2000) 72nd ENMC international workshop: myotubular myopathy 1–3 October 1999, Hilversum, The Netherlands. Neuromuscul Disord 10:525–529

    Article  CAS  Google Scholar 

  • Wallgren-Pettersson C, Laing NG (2006) 138th ENMC workshop: nemaline myopathy, 20–22 May 2005, Naarden. The Netherlands. Neuromuscul Disord 16:54–60

    Google Scholar 

  • Wallgren-Pettersson C, Pelin K, Nowack KJ et al (2004) ENMC international consortium on Nemaline myopathy. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul Disord 14:461–470

    Article  Google Scholar 

  • Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18(4):230–238

    Article  Google Scholar 

  • Yiş U, Uyanik G, Rosendahl DM, Carman KB, Bayram E, Heise M, Cömertpay G, Kurul SH (2014) Clinical, radiological, and genetic survey of patients with muscle-eye-brain disease caused by mutations in POMGNT1. Pediatr Neurol 50(5):491–497

    Article  Google Scholar 

  • Yoshioka M, Saiwai S, Kuroki S (1991) MR imaging of the brain in Fukuyama-type congenital muscular dystrophy. AJNR Am J Neuroradiol 12:63–65

    CAS  PubMed  Google Scholar 

  • Zeesman S, Carson N, Whelan DT (2002) Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am J Med Genet 107:222–226

    Article  Google Scholar 

  • Zhou H, Yamaguchi N, Xu L et al (2006) Characterization of recessiveRYR1mutations in core myopathies. Hum Mol Genet 15:2791–2803

    Article  CAS  Google Scholar 

  • Zhou H, Jungbluth H, Sewry CA et al (2007) Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 130:2024–2036

    Article  Google Scholar 

  • Zuccotti GV, Giovannini M (2012) Manuale di Pediatria- la pratica clinica, Chapter 22. Societa’ editrice Esculapio, Bologna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Grosso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grosso, S., Ferranti, S. (2018). Neuromuscular Disorders in Newborns. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_281

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_281

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics