Skip to main content

Inflammation and Perinatal Brain Injury

  • Reference work entry
  • First Online:
Neonatology

Abstract

Inflammation is a critical contributor to both normal development and injury outcome in the immature brain. The consequences of immune activation in brain injury will be entirely different depending on context and stage of central nervous system (CNS) maturity. The immature brain can be exposed to inflammation in connection with viral or bacterial infection during pregnancy or as a result of sterile CNS insults such as hypoxia-ischemia and neonatal stroke. Through efficient anti-inflammatory and reparative processes, inflammation may resolve without any harmful effects on the brain. Alternatively, inflammation contributes to injury or enhances CNS vulnerability. Acute inflammation can also be shifted to a chronic inflammatory state and/or adversely affect brain development resulting in neurologic disease in children or adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almkvist J, Fäldt J, Dahlgren C et al (2001) Lipopolysaccharide induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-Leu-Phe. Infect Immun 69:832–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly H, Khashaba MT, El-Ayouty M et al (2006) IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 28:178–182

    Article  PubMed  Google Scholar 

  • Ando M, Takashima S, Mito T (1988) Endotoxin, cerebral blood flow, amino acids and brain damage in young rabbits. Brain Dev 10:365–370

    Article  CAS  PubMed  Google Scholar 

  • Arvin KL, Han BH, Du Y et al (2002) Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 52:54–61

    Article  CAS  PubMed  Google Scholar 

  • Bartha AI, Foster-Barber A, Miller SP et al (2004) Neonatal encephalopathy: association of cytokines with MR spectroscopy and outcome. Pediatr Res 56:960–966

    Article  CAS  PubMed  Google Scholar 

  • Bolouri H, Sävman K, Wang W et al (2014) Innate defense regulator peptide 1018 protects against perinatal brain injury. Ann Neurol 75(3):395–410

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Andersson AL, Blomgren K et al (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45:500–509

    Article  CAS  PubMed  Google Scholar 

  • Borrell V, Marin O (2006) Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 9:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Cameron JS, Alexopoulou L, Sloane JA et al (2007) Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 27:13033–13041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chau V, Poskitt KJ, McFadden DE et al (2009) Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 66:155–164

    Article  PubMed  Google Scholar 

  • Colnot C, Ripoche MA, Milon G et al (1998) Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3- null mutant mice. Immunology 94:290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coumans AB, Middelanis JS, Garnier Y et al (2003) Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 53:770–775

    Article  CAS  PubMed  Google Scholar 

  • Cowan F, Rutherford M, Groenendaal F et al (2003) Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 361:736–742

    Article  PubMed  Google Scholar 

  • Dalitz P, Harding R, Rees SM et al (2003) Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin: possible factors in white matter injury after acute infection. J Soc Gynecol Investig 10:283–290

    CAS  PubMed  Google Scholar 

  • Dammann O, O’Shea TM (2008) Cytokines and perinatal brain damage. Clin Perinatol 35:643–663

    Article  PubMed  PubMed Central  Google Scholar 

  • Dammann O, Allred EN, Veelken N (1998) Increased risk of spastic diplegia among very low birth weight children after preterm labor or prelabor rupture of membranes. J Pediatr 132:531–535

    Article  CAS  PubMed  Google Scholar 

  • de la Mano A, Gato A, Alonso MI et al (2007) Role of interleukin- 1beta in the control of neuroepithelial proliferation and differentiation of the spinal cord during development. Cytokine 37:128–137

    Article  PubMed  CAS  Google Scholar 

  • Dean JM, Farrag D, Zahkouk SA et al (2009a) Cerebellar white matter injury following systemic endotoxemia in preterm fetal sheep. Neuroscience 160:606–615

    Article  CAS  PubMed  Google Scholar 

  • Dean JM, Wang X, Kaindl AM et al (2009b) Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 24:776–783

    Article  PubMed  CAS  Google Scholar 

  • Dommergues MA, Patkai J, Renauld JC et al (2000) Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 47:54–63

    Article  CAS  PubMed  Google Scholar 

  • Doverhag C, Keller M, Karlsson A et al (2008) Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 31:133–144

    Article  CAS  PubMed  Google Scholar 

  • Doverhag C, Hedtjärn M, Poirier F et al (2010) Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis 38:36–46

    Article  CAS  PubMed  Google Scholar 

  • Duggan PJ, Maalouf EF, Watts TL et al (2001) Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet 358:1699–1700

    Article  CAS  PubMed  Google Scholar 

  • Duncan JR, Cock ML, Scheerlinck JP et al (2002) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52:941–949

    Article  CAS  PubMed  Google Scholar 

  • Duncan JR, Cock ML, Suzuki K et al (2006) Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia. J Soc Gynecol Investig 13:87–96

    Article  CAS  PubMed  Google Scholar 

  • Dziembowska M, Tham TN, Lau P et al (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50:258–269

    Article  CAS  PubMed  Google Scholar 

  • Eklind S, Mallard C, Leverin AL et al (2001) Bacterial endotoxin sensitizes the immature brain to hypoxic – ischaemic injury. Eur J Neurosci 13:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Fleiss B, Gressens P (2012) Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy? Lancet Neurol 11:556–566

    Article  PubMed  Google Scholar 

  • Fox C, Dingman A, Derugin N et al (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 25:1138–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaulden J, Reiter JF (2008) Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells. Hum Mol Genet 17:R60–R66

    Article  CAS  PubMed  Google Scholar 

  • Gavilanes AW, Strackx E, Kramer BW et al (2009) Chorioamnionitis induced by intra-amniotic lipopolysaccharide resulted in an interval- dependent increase in central nervous system injury in the fetal sheep. Am J Obstet Gynecol 200(437):e431–e438

    Google Scholar 

  • Gilles FH, Averill DR Jr, Kerr CS (1977) Neonatal endotoxin encephalopathy. Ann Neurol 2:49–56

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Vaca K (1993) Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 24:I84–I90

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Young DG, Woodward J et al (1988) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8:709–714

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg RL, Culhane JF, Iams JD et al (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84

    Article  PubMed  Google Scholar 

  • Gomez R, Romero R, Ghezzi F et al (1998) The fetal inflammatory response syndrome. Am J Obstet Gynecol 179:194–202

    Article  CAS  PubMed  Google Scholar 

  • Grether JK, Nelson KB (1997) Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 278:207–211

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Mallard C (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 18:117–123

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Gilland E, Bona E et al (1996) Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 40:603–609

    Article  CAS  PubMed  Google Scholar 

  • Hagberg H, Gressens P, Mallard C (2012) Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 71(4):444–457

    Article  PubMed  Google Scholar 

  • Hagberg H, Mallard C, Ferriero DM et al (2015) The role of inflammation in perinatal brain injury. Nat Rev Neurol 11:192–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedtjarn M, Leverin AL, Eriksson K et al (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 22:5910–5919

    Article  CAS  PubMed  Google Scholar 

  • Hedtjarn M, Mallard C, Hagberg H (2004) Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24:1333–1351

    Article  PubMed  Google Scholar 

  • Hedtjarn M, Mallard C, Iwakura Y et al (2005) Combined deficiency of IL-1beta18, but not IL-1alphabeta, reduces susceptibility to hypoxia- ischemia in the immature brain. Dev Neurosci 27:143–148

    Article  PubMed  CAS  Google Scholar 

  • Hsu DK, Yang RY, Pan Z et al (2000) Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudome S, Palmer C, Roberts RL et al (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41:607–616

    Article  CAS  PubMed  Google Scholar 

  • Huh GS, Boulanger LM, Du H et al (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda T, Mishima K, Aoo N et al (2004) Combination treatment of neonatal rats with hypoxia-ischemia and endotoxin induces long-lasting memory and learning impairment that is associated with extended cerebral damage. Am J Obstet Gynecol 191:2132–2141

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Mishima K, Aoo N et al (2005) Dexamethasone prevents long-lasting learning impairment following a combination of lipopolysaccharide and hypoxia-ischemia in neonatal rats. Am J Obstet Gynecol 192:719–726

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Yang L, Ikenoue T et al (2006) Endotoxin-induced hypoxic- ischemic tolerance is mediated by up-regulation of corticosterone in neonatal rat. Pediatr Res 59:56–60

    Article  CAS  PubMed  Google Scholar 

  • Imai F, Suzuki H, Oda J et al (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27:488–500

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson B, Hagberg G, Hagberg B et al (2002) Cerebral palsy in preterm infants: a population-based case–control study of antenatal and intrapartal risk factors. Acta Paediatr 91:946–951

    Article  CAS  PubMed  Google Scholar 

  • Johnston MV, Hagberg H (2007) Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol 49:74–78

    Article  PubMed  Google Scholar 

  • Kaukola T, Herva R, Perhomaa M et al (2006) Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res 59:478–483

    Article  PubMed  Google Scholar 

  • Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Takata K, Inden M et al (2004) Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 94:203–206

    Article  CAS  PubMed  Google Scholar 

  • Kumazaki K, Nakayama M, Sumida Y et al (2002) Placental features in preterm infants with periventricular leukomalacia. Pediatrics 109:650–655

    Article  PubMed  Google Scholar 

  • Lalancette-Hebert M, Gowing G, Simard A et al (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    Article  CAS  PubMed  Google Scholar 

  • Lathia JD, Okun E, Tang SC et al (2008) Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. J Neurosci 28:13978–13984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee R, Ng D, Fung G et al (2006) Chorioamnionitis with or without funisitis increases the risk of hypotension in very low birthweight infants on the first postnatal day but not later. Arch Dis Child 91:F346–F348

    Article  CAS  Google Scholar 

  • Lehnardt S, Lachance C, Patrizi S et al (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22:2478–2486

    Article  CAS  PubMed  Google Scholar 

  • Lehnardt S, Massillon L, Follett P et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 100:8514–8519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leviton A, Gressens P (2007) Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci 30:473–478

    Article  CAS  PubMed  Google Scholar 

  • Leviton A, Gilles F, Neff R et al (1976) Multivariate analysis of risk of perinatal telencephalic leucoencephalopathy. Am J Epidemiol 104:621–626

    Article  CAS  PubMed  Google Scholar 

  • Leviton A, Paneth N, Reuss ML et al (1999) Maternal infection, fetal inflammatory response, and brain damage in very low birth weight infants. Developmental epidemiology network investigators. Pediatr Res 46:566–575

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Kwon D, Schielke GP et al (1999) Mice deficient in interleukin- 1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab 19:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Li J, Chiu I et al (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175:209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallard C, Hagberg H (2007) Inflammation-induced preconditioning in the immature brain. Semin Fetal Neonatal Med 12:280–286

    Article  PubMed  Google Scholar 

  • Mallard C, Welin AK, Peebles D et al (2003) White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 28:215–223

    Article  CAS  PubMed  Google Scholar 

  • Mallard C, Wang X, Hagberg H (2009) The role of toll-like receptors in perinatal brain injury. Clin Perinatol 36:763–772, v–vi

    Article  PubMed  Google Scholar 

  • Martin D, Chinookoswong N, Miller G (1994) The interleukin-1 receptor antagonist (rhIL-1ra) protects against cerebral infarction in a rat model of hypoxia-ischemia. Exp Neurol 130:362–367

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ancel A, Garcia-Alix A, Pascual-Salcedo D et al (1997) Interleukin- 6 in the cerebrospinal fluid after perinatal asphyxia is related to early and late neurological manifestations. Pediatrics 100:789–794

    Article  CAS  PubMed  Google Scholar 

  • Matsuo Y, Onodera H, Shiga Y et al (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke 25:1469–1475

    Article  CAS  PubMed  Google Scholar 

  • Matsuo Y, Kihara T, Ikeda M et al (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15:941–947

    Article  CAS  PubMed  Google Scholar 

  • McRae A, Gilland E, Bona E, Hagberg H (1995) Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 84:245–252

    Article  CAS  PubMed  Google Scholar 

  • Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  CAS  PubMed  Google Scholar 

  • Nelson KB, Grether JK (1998) Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 179:507–513

    Article  CAS  PubMed  Google Scholar 

  • Nelson KB, Dambrosia JM, Grether JK et al (1998) Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 44:665–675

    Article  CAS  PubMed  Google Scholar 

  • Nitsos I, Rees SM, Duncan J et al (2006) Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig 13:239–247

    Article  CAS  PubMed  Google Scholar 

  • Oygur N, Sonmez O, Saka O et al (1998) Predictive value of plasma and cerebrospinal fluid tumour necrosis factor-alpha and interleukin-1 beta concentrations on outcome of full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 79:F190–F193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer C, Roberts RL, Young PI (2004) Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic- ischemic brain injury. Pediatr Res 55:549–556

    Article  PubMed  Google Scholar 

  • Patni S, Flynn P, Wynen LP et al (2007) An introduction to Toll-like receptors and their possible role in the initiation of labour. BJOG 114:326–1334

    Article  CAS  Google Scholar 

  • Reiman M, Kujari H, Maunu J et al (2008) Does placental inflammation relate to brain lesions and volume in preterm infants? J Pediatr 152:642–647

    Article  PubMed  Google Scholar 

  • Rolls A, Shechter R, London A et al (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Romero R, Dey SK, Fisher SJ (2014) Preterm labor: one syndrome, many causes. Science 345(6198):760–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savman K, Blennow M, Gustafson K et al (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43:746–751

    Article  CAS  PubMed  Google Scholar 

  • Shalak LF, Laptook AR, Jafri HS et al (2002) Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics 110:673–680

    Article  PubMed  Google Scholar 

  • Shimazaki T, Shingo T, Weiss S (2001) The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci 21:7642–7653

    Article  CAS  PubMed  Google Scholar 

  • Shinjyo N, Stahlberg A, Dragunow M et al (2009) Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells 27:2824–2832

    Article  CAS  PubMed  Google Scholar 

  • Silveira RC, Procianoy RS (2003) Interleukin-6 and tumor necrosis factor-alpha levels in plasma and cerebrospinal fluid of term newborn infants with hypoxic-ischemic encephalopathy. J Pediatr 143:625–629

    Article  CAS  PubMed  Google Scholar 

  • Stanley FJ (1994) The aetiology of cerebral palsy. Early Hum Dev 36:81–88

    Article  CAS  PubMed  Google Scholar 

  • Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389

    Article  CAS  PubMed  Google Scholar 

  • Stridh L, Mottahedin A, Johansson ME et al (2013) Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. J Neurosci 33(29):12041–12051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svedin P, Hagberg H, Savman K et al (2007) Matrix metalloproteinase- 9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 27:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Szaflarski J, Burtrum D, Silverstein FS (1995) Cerebral hypoxia- ischemia stimulates cytokine gene expression in perinatal rats. Stroke 26:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Tahraoui SL, Marret S, Bodenant C et al (2001) Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol 11:56–71

    Article  CAS  PubMed  Google Scholar 

  • Toti P, De Felice C, Palmeri ML et al (1998) Inflammatory pathogenesis of cortical polymicrogyria: an autopsy study. Pediatr Res 44:291–296

    Article  CAS  PubMed  Google Scholar 

  • Tran PB, Banisadr G, Ren D et al (2007) Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 500:1007–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji M, Wilson MA, Lange MS et al (2004) Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol 189:58–65

    Article  CAS  PubMed  Google Scholar 

  • Vela JM, Molina-Holgado E, Arevalo-Martin A et al (2002) Interleukin- 1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol Cell Neurosci 20:489–502

    Article  CAS  PubMed  Google Scholar 

  • Verma U, Tejani N, Klein S et al (1997) Obstetric antecedents of intraventricular hemorrhage and periventricular leukomalacia in the low-birth-weight neonate. Am J Obstet Gynecol 176:275–281

    Article  CAS  PubMed  Google Scholar 

  • Vilcek J (1998) The cytokines: an overview. In: Thomson AW (ed) The cytokine handbook, 3rd edn. Academic, San Diego, pp 1–21

    Google Scholar 

  • Walder CE, Green SP, Darbonne WC et al (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hagberg H, Nie C et al (2007a) Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia- ischemia. J Neuropathol Exp Neurol 66:552–561

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Svedin P, Nie C et al (2007b) N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 61:263–271

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Stridh L, Li W et al (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183:7471–7477

    Article  CAS  PubMed  Google Scholar 

  • Wu YW, Colford JM Jr (2000) Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284:1417–1424

    Article  CAS  PubMed  Google Scholar 

  • Wu YW, Escobar GJ, Grether JK et al (2003) Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA 290:2677–2684

    Article  CAS  PubMed  Google Scholar 

  • Wu YW, Croen LA, Torres AR et al (2009) Interleukin-6 genotype and risk for cerebral palsy in term and near-term infants. Ann Neurol 66:663–670

    Article  CAS  PubMed  Google Scholar 

  • Yan E, Castillo-Melendez M, Nicholls T et al (2004) Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr Res 55:855–863

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Sameshima H, Ikeda T et al (2004) Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 30:142–147

    Article  CAS  PubMed  Google Scholar 

  • Yoon BH, Romero R, Park JS et al (2000) Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstet Gynecol 182:675–681

    Article  CAS  PubMed  Google Scholar 

  • Yoon BH, Romero R, Moon JB et al (2001) Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol 185:1130–1136

    Article  CAS  PubMed  Google Scholar 

  • Young RS, Hernandez MJ, Yagel SK (1982) Selective reduction of blood flow to white matter during hypotension in newborn dogs: a possible mechanism of periventricular leukomalacia. Ann Neurol 12:445–448

    Article  CAS  PubMed  Google Scholar 

  • Zou YR, Kottmann AH, Kuroda M et al (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hagberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hagberg, H., Mallard, C., Sävman, K. (2018). Inflammation and Perinatal Brain Injury. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_265

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_265

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics