Skip to main content
Book cover

Neonatology pp 1999–2017Cite as

Brain Development and Perinatal Vulnerability to Cerebral Damage

  • Reference work entry
  • First Online:
  • 117 Accesses

Abstract

The recent exponential rise in detailed magnetic resonance (MR) imaging studies has emphasized the concept of gestationally determined regional vulnerability in the brain. The site and nature of the injury is determined by a combination of the characteristics of the insult, the specific tissue and cell vulnerability, and the gestational age. Acute perinatal hypoxic ischemic events, previously considered characteristic for the term newborn presenting with hypoxic-ischemic encephalopathy, may occur at earlier points in gestation. White matter lesions, which are considered the hallmark of injury to the preterm brain, may also occur in a small percentage of term neonates. The regional tissue vulnerability at a given gestational age will be determined by the local metabolic requirements in combination with specific cell characteristics, such as the expression of different glutamatergic receptor subtypes and endogenous antioxidant mechanisms. In addition, neonatal neurons are programmed for cell death to allow for essential pruning and optimal connectivity, but this characteristic increases the vulnerability of such cells to injury. The nature of the insult is also important in dictating lesion site. In this chapter we will discuss the vulnerability of tissue and cell types in relation to gestational age and examine how these relate to patterns of injury seen on brain MR imaging and the clinical history and presentation of the infant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ajayi-Obe M, Saeed N, Cowan FM et al (2000) Reduced development of cerebral cortex in extremely preterm infants. Lancet 356:1162–1163

    Article  CAS  Google Scholar 

  • Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218

    Article  CAS  Google Scholar 

  • Andiman SE, Haynes RL, Trachtenberg FL et al (2010) The cerebral cortex overlying periventricular leukomalacia: analysis of pyramidal neurons. Brain Pathol 20:803–814

    Article  Google Scholar 

  • Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7:386–410

    Article  CAS  Google Scholar 

  • Barkovich AJ, Lindan CE (1994) Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic consideration. AJNR Am J Neuroradiol 15:703–715

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Sargent SK (1995) Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol 16:1837–1846

    CAS  PubMed  Google Scholar 

  • Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131:573–582

    Article  Google Scholar 

  • Billiard SS, Haynes RL, Folkerth RD et al (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208

    Article  Google Scholar 

  • Boardman JP, Counsell SJ, Rueckert D et al (2006) Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. NeuroImage 32:70–78

    Article  Google Scholar 

  • Chugani HT, Shewmon DA, Shields WD et al (1993) Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia 34:764–771

    Article  CAS  Google Scholar 

  • Cioni G, Fazzi B, Coluccini M et al (1997) Cerebral visual impairment in preterm infants with periventricular leukomalacia. Pediatr Neurol 17:331–338

    Article  CAS  Google Scholar 

  • Counsell SJ, Maalouf EF, Fletcher AM et al (2002) MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 23:872–881

    PubMed  Google Scholar 

  • De Carli A, Jary S, Ramenghi LA et al (2010) Magnetic resonance imaging (MRI) at term equivalent age correlates with neurodevelopment at 2 years in preterm infants with post-hemorrhagic ventricular dilatation. PAS Meeting Abstract 3746

    Google Scholar 

  • de Graaf-Peters V, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266

    Article  Google Scholar 

  • Dean JM, Wang X, Kaindl AM et al (2009) Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain, Behaviour and Immunity. J Neurosci 16:2508–2521

    Google Scholar 

  • Deng W, Wang H, Rosenberg PA et al (2004) Role of metabotropic glutamate receptors in oligodendrocytes excitotoxicity and oxidative stress. Proc Natl Acad Sci U S A 101:7751–7756

    Article  CAS  Google Scholar 

  • Dommergues MA, Plaisant F, Verney C, Gressens P (2003) Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121:619–628

    Article  CAS  Google Scholar 

  • Dudink J, Buijs J, Govaert P et al (2010) Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatr Radiol 40:1397–1404

    Article  Google Scholar 

  • Dyet LE, Kennea N, Counsell SJ et al (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118:536–548

    Article  Google Scholar 

  • Elkabes S, Peng L, Black IB (1998) Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J Neurosci Res 54:117–122

    Article  CAS  Google Scholar 

  • Ferriero DM, Arcavi LJ, Sagar SM et al (1988) Selective sparing of NADPH-diaphorase neurons in neonatal hypoxia-ischemia. Ann Neurol 24:670–676

    Article  CAS  Google Scholar 

  • Ferriero DM, Sheldon RA, Black SM, Chuai J (1995) Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat. Pediatr Res 38:912–918

    Article  CAS  Google Scholar 

  • Ferriero DM, Holtzman DM, Black SM, Sheldon RA (1996) Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 3:64–71

    Article  CAS  Google Scholar 

  • Fumagalli M, Ramenghi LA, Righini A et al (2009) Cerebellar haemorrhages and pons development in extremely low birth weight infants. Front Biosci 1:537–541

    Google Scholar 

  • Ghazi-Birry HS, Brown WR, Moody DM et al (1997) Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 18:219–239

    CAS  PubMed  Google Scholar 

  • Ghosh A, Shatz CJ (1992) Involvement of subplate neurons in the formation of ocular dominance columns. Science 255:1441–1443

    Article  CAS  Google Scholar 

  • Gurka MJ, LoCasale-Crouch J, Blackman JA (2010) Long-term cognition, achievement, socioemotional, and behavioral development of healthy late-preterm infants. Arch Pediatr Adolesc Med 164:525–532

    Article  Google Scholar 

  • Hambleton G, Wigglesworth JS (1976) Origin of intraventricular haemorrhage in the preterm infant. Arch Dis Child 51:651–659

    Article  CAS  Google Scholar 

  • Haynes RL, Folkerth RD, Keefe RJ et al (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62:441–450

    Article  Google Scholar 

  • Hüppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497

    Article  Google Scholar 

  • Hüppi PS, Schuknecht B, Boesch C et al (1996) Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res 39:895–901

    Article  Google Scholar 

  • Inder TE, Huppi PS, Warfield S et al (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760

    Article  CAS  Google Scholar 

  • Jiang ZD, Brosi DM, Wu YY, Wilkinson AR (2009) Relative maturation of peripheral and central regions of the human brainstem from preterm to term and the influence of preterm birth. Pediatr Res 65:657–662

    Article  Google Scholar 

  • Judas M, Rados M, Jovanov-Milosevic N et al (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol 26:2671–2684

    PubMed  Google Scholar 

  • Kapellou O, Counsell SJ, Kennea N et al (2006) Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 3:e265

    Article  Google Scholar 

  • Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161

    Article  CAS  Google Scholar 

  • Kinoshita Y, Okudera T, Tsuru E, Yokota A (2001) Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. AJNR Am J Neuroradiol 22:382–388

    CAS  PubMed  Google Scholar 

  • Kitsommart R, Janes M, Mahajan V et al (2009) Outcomes of latepreterm infants: a retrospective, single-center, Canadian study. Clin Pediatr (Phila) 48:844–850

    Article  Google Scholar 

  • Kjellmer I (1991) Mechanism of perinatal brain damage. Ann Med 23:675–679

    Article  CAS  Google Scholar 

  • Kostovic I, Judas M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48:388–393

    Article  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    Article  CAS  Google Scholar 

  • Lee CT, Chen J, Worden LT, Freed WJ (2010) Cocaine causes deficits in radial migration and alters the distribution of glutamate and GABA neurons in the developing rat cerebral cortex. Synapse 65:21–34

    Article  Google Scholar 

  • Leech RW, Kohnen P (1974) Subependymal and intraventricular hemorrhage in the newborn. Am J Pathol 77:465–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leuchtmann EA, Ratner AE, Vijitruth R et al (2003) AMPA receptors are the major mediators of excitotoxic death in mature oligodendrocytes. Neurobiol Dis 14:336–348

    Article  CAS  Google Scholar 

  • Ligam P, Haynes RL, Folkerth RD et al (2009) Thalamic damage in periventricular leukomalacia: novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatr Res 65:524–529

    Article  Google Scholar 

  • Limperopoulos C, Benson CB, Bassan H et al (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116:717–724

    Article  Google Scholar 

  • Limperopoulos C, Bassan H, Gauvreau K et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120:584–593

    Article  Google Scholar 

  • Limperopoulos C, Robertson RL, Sullivan NR et al (2009) Cerebellar injury in term infants: clinical characteristics, magnetic resonance imaging findings, and outcome. Pediatr Neurol 41:1–8

    Article  Google Scholar 

  • Logitharajah P, Rutherford MA, Cowan FM (2009) Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging and outcome. Pediatr Res 66:222–229

    Article  Google Scholar 

  • Luo MH, Hannemann H, Kulkarni AS et al (2010) Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J Virol 84:3528–3541

    Article  CAS  Google Scholar 

  • Marcorelles P, Laquerrière A, Adde-Michel C et al (2010) Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes. Acta Neuropathol 120:503–515

    Article  CAS  Google Scholar 

  • Marin Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III: gray matter lesions of the neocortex. J Neuropathol Exp Neurol 58:407–429

    Article  CAS  Google Scholar 

  • Marsh B, Stevens SL, Packard AE et al (2009) Systemic lipopolysaccharide protects the brain from Ischemic Injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29:9839–9849

    Article  CAS  Google Scholar 

  • Mateus J, Fox K, Jain S et al (2010) Preterm premature rupture of membranes: clinical outcomes of late-preterm infants. Clin Pediatr (Phila) 49:60–65

    Article  Google Scholar 

  • McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235

    Article  Google Scholar 

  • McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxiaischemia. J Neurosci 23:3308–3315

    Article  CAS  Google Scholar 

  • Melamed N, Klinger G, Tenenbaum-Gavish K et al (2009) Shortterm neonatal outcome in low-risk, spontaneous, singleton, late preterm deliveries. Obstet Gynecol 114(2 Part 1):253–260

    Article  Google Scholar 

  • Ment LR, Allan WC, Makuch RW et al (2005) Grade 3 to 4 intraventricular hemorrhage and Bayley scores predict outcome. Pediatrics 116:1597–1598

    Article  Google Scholar 

  • Métin C, Vallee RB, Rakic P, Bhide PG (2008) Modes and mishaps of neuronal migration in the mammalian brain. J Neurosci 28:11746–11752

    Article  Google Scholar 

  • Miller SP, Ferriero DM, Leonard C et al (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 147:609–616

    Article  Google Scholar 

  • Miyoshi G, Hjerling-Leffler J, Karayannis T et al (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30:1582–1594

    Article  CAS  Google Scholar 

  • Morse SB, Zheng H, Tang Y, Roth J (2009) Early school-age outcomes of late preterm infants. Pediatrics 123:e622–e629

    Article  Google Scholar 

  • Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432

    Article  CAS  Google Scholar 

  • Northington FJ, Graham EM, Martin LJ (2005) Apoptosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? Brain Res Brain Res Rev 50:244–257

    Article  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF et al (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 15:5588–1593

    Article  Google Scholar 

  • Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 54:25–40

    PubMed  Google Scholar 

  • Rakic S, Zecevic N (2000) Programmed cell death in the developing human telencephalon. Eur J Neurosci 12:2721–2734

    Article  CAS  Google Scholar 

  • Ramenghi LA, Gill BJ, Tanner SF et al (2002) Cerebral venous thrombosis, intraventricular haemorrhage and white matter lesions in a preterm newborn with factor V (Leiden) mutation. Neuropediatrics 33:97–99

    Article  CAS  Google Scholar 

  • Ramenghi LA, Fumagalli M, Righini A et al (2007) Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 49:161–167

    Article  Google Scholar 

  • Ramenghi LA, Ricci D, Mercuri E et al (2010) Visual performance and brain structure in the developing brain of preterm infants. Early Hum Dev 86(Suppl 1):73–75

    Article  Google Scholar 

  • Rezaie P, Male D (1999) Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 45:359–382

    Article  CAS  Google Scholar 

  • Ricci D, Anker S, Cowan F et al (2006) Thalamic atrophy in infants with PVL and cerebral visual impairment. Early Hum Dev 82:591–595

    Article  Google Scholar 

  • Romeo DM, Di Stefano A, Conversano M et al (2010) Neurodevelopmental outcome at 12 and 18 months in late preterm infants. Eur J Paediatr Neurol 14:503–507

    Article  Google Scholar 

  • Rutherford MA, Supramaniam V, Ederise A et al (2010) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52:505–521

    Article  Google Scholar 

  • Segovia KN, McClure M, Moravec M et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530

    Article  Google Scholar 

  • Skoff RP (1980) Neuroglia: a reevaluation of their origin and development. Pathol Res Pract 168:279–300

    Article  CAS  Google Scholar 

  • Srinivasan L, Allsop J, Counsell SJ et al (2006) Smaller cerebellar volumes in very preterm infants at term equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 117:376–386

    Google Scholar 

  • Supramaniam V, Srinivasan L, Doherty K et al (2010) The distribution and morphology of microglial (MG) cells in the periventricular white matter (PVWM) of immature human brain. PAS Meeting Abstract 3105

    Google Scholar 

  • Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23:9996–10001

    Article  CAS  Google Scholar 

  • Takashima S (1982) Olivocerebellar lesions in infants born prematurely. Brain and Development 4:361–366

    Article  CAS  Google Scholar 

  • Towbin A (1968) Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn. Am J Pathol 52:121–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer B, Roth S, Riley K et al (2006) Neurodevelopmental outcome of preterm infants with ventricular dilatation with and without associated haemorrhage. Dev Med Child Neurol 48:348–352

    Article  Google Scholar 

  • Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  Google Scholar 

  • Wang X, Stridh L, Li W et al (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183:7471–7477

    Article  CAS  Google Scholar 

  • Whitelaw A, Jary S, Kmita G et al (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125:e852–e858

    Article  Google Scholar 

  • Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31:1091–1099

    Article  CAS  Google Scholar 

  • Wu YW, Hamrick SE, Miller SP et al (2003) Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 54:123–126

    Article  Google Scholar 

  • Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69:415–436

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramenghi, L.A., Fumagalli, M., Supramaniam, V. (2018). Brain Development and Perinatal Vulnerability to Cerebral Damage. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_264

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_264

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics