Skip to main content
Book cover

Neonatology pp 1619–1639Cite as

Inflammatory Mediators in Neonatal Asphyxia and Infection

  • Reference work entry
  • First Online:
  • 108 Accesses

Abstract

Inflammatory mediators, such as inflammatory cytokines, are closely associated with neonatal diseases, including neonatal asphyxia (NA) and infection. The pathophysiology of NA may be mainly responsible for ischemia-reperfusion injuries, leading to the damage of tissue and organs via the production of aberrant inflammatory mediators, including cytokines. Excessive cytokine production may be associated with the activation of innate immunity, leading to further exacerbation of NA. In addition, pathogenic organisms can induce an acute/excessive inflammatory response through phagocyte activation with cytokine storm. Thus, these unbalanced immunological responses may induce inflammation and tissue damage in NA and infection. Furthermore, to compensate for cytokine imbalance, anti-inflammatory cytokines may be induced. Possible causes include the fact that preterm and term neonates are susceptible to NA and infection due to their lack of an adequate immune system. Therefore, given such a milieu, proper balanced cytokine production may influence the outcome of patients with NA and infection. From these aspects, we describe the relationships between inflammatory mediators in NA and infection in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APCs:

Antigen-presenting cells

APPs:

Antimicrobial proteins and peptides

BBB:

Blood-brain barrier

BPIs:

Bactericidal/permeability-increasing proteins

CAM:

Chorioamnionitis

CARS:

Compensatory anti-inflammatory response syndrome

CNS:

Central nervous system

CRP:

C-reactive protein

DAMPs:

Damage-associated with molecular patterns

Epo:

Erythropoietin

FIRS:

Fetus inflammatory response syndrome

G-CSF:

Granulocyte-colony-stimulating factor

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HMGB1 protein:

High-mobility group box 1 protein

IFN:

Interferon

IgG:

Immunoglobulin G

IL:

Interleukin

MARS:

Mixed anti-inflammatory response syndrome

MCP-1:

Monocyte chemoattractant protein-1

MIP:

Macrophage inflammatory protein

MMPs:

Matrix metalloproteinases

NA:

Neonatal asphyxia

NF-κB:

Nuclear factor kappa-B

NO:

Nitric oxide

PG:

Prostaglandins

PRRs:

Pattern recognition receptors

RANTES:

Regulated on activation, normal T cell expressed and secreted

ROS:

Reactive oxygen species

SIRS:

Systemic inflammatory response syndrome

TGF:

Transforming growth factor

TLRs:

Toll-like receptors

TNF:

Tumor necrosis factor

TREM-1:

Triggering receptor expressed on myeloid cells-1

VEGF:

Vascular endothelial growth factor

References

  • Abraham E, Arcaroli J, Carmody A et al (2000) HMG-1 as a mediator of acute lung inflammation. J Immunol 165:2950–2954

    Article  CAS  PubMed  Google Scholar 

  • Adib-Conquy M, Cavaillon J-M (2009) Compensatory anti-inflammatory response syndrome. Thromb Haemost 101:36–47

    Article  CAS  PubMed  Google Scholar 

  • Akdis M, Burgler S, Crameri R et al (2011) Interleukins, from 1 to 37, and interferon-gamma: receptors, functions, and roles in diseases. J Allergy Clin Immunol 127:701–721, e701–770

    Article  CAS  PubMed  Google Scholar 

  • Ala Y, Palluy O, Favero J et al (1992) Hypoxia/reoxygenation stimulates endothelial cells to promote interleukin-1 and interleukin-6 production. Effects of free radical scavengers. Agents Actions 37:134–139

    Article  CAS  PubMed  Google Scholar 

  • Aly H, Khashaba MT, El-Ayouty M et al (2006) IL-1β, IL-6 and TNF-α and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 28:178–182

    Article  PubMed  Google Scholar 

  • Aly H, Hassanein S, Nada A et al (2009) Vascular endothelial growth factor in neonates with perinatal asphyxia. Brain Dev 31:600–604

    Article  PubMed  Google Scholar 

  • Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568

    Article  CAS  PubMed  Google Scholar 

  • Baranova O, Miranda LF, Pichiule P et al (2007) Neuron-specific inactivation of the hypoxia inducible factor 1α increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27:6320–6332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belderbos ME, Levy O, Meyaard L et al (2013) Plasma-mediated immune suppression: a neonatal perspective. Pediatr Allergy Immunol 24:102–113

    Article  PubMed  Google Scholar 

  • Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Andersson AL, Blomgren K et al (1999) Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 45:500–509

    Article  CAS  PubMed  Google Scholar 

  • Bonizzi G, Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288

    Article  CAS  PubMed  Google Scholar 

  • Brochu ME, Girard S, Lavoie K et al (2011) Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: an experimental study. J Neuroinflammation 8:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocklehurst P, Farrell B, King A et al (2011) Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med 365:1201–1211

    Article  PubMed  Google Scholar 

  • Carr R, Modi N, Dore C (2003) G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev Cd003066

    Google Scholar 

  • Castellheim A, Brekke OL, Espevik T et al (2009) Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 69:479–491

    Article  CAS  PubMed  Google Scholar 

  • Chalak LF, Sanchez PJ, Adams-Huet B et al (2014) Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr 164:468–474.e461

    Article  CAS  PubMed  Google Scholar 

  • Chapados I, Lee T-F, Chik CL et al (2011) Hydrocortisone administration increases pulmonary artery pressure in asphyxiated newborn piglets reoxygenated with 100% oxygen. Eur J Pharmacol 652:111–116

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Valdez R, Kovell L, Ahlawat R et al (2013) Opioids and clonidine modulate cytokine production and opioid receptor expression in neonatal immune cells. J Perinatol Off J Calif Perinat Assoc 33:374–382

    Article  CAS  Google Scholar 

  • Chiesa C, Pellegrini G, Panero A et al (2003) Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest 33:352–358

    Article  CAS  PubMed  Google Scholar 

  • Chirico V, Lacquaniti A, Salpietro V et al (2014) High-mobility group box 1 (HMGB1) in childhood: from bench to bedside. Eur J Pediatr 173:1123–1136

    Article  CAS  PubMed  Google Scholar 

  • Cuenca AG, Wynn JL, Moldawer LL et al (2013) Role of innate immunity in neonatal infection. Am J Perinatol 30:105–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Derugin N, Wendland M, Muramatsu K et al (2000) Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rats. Stroke 31:1752–1761

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16:457–499

    Article  CAS  PubMed  Google Scholar 

  • Døllner H, Vatten L, Halgunset J et al (2002) Histologic chorioamnionitis and umbilical serum levels of pro-inflammatory cytokines and cytokine inhibitors. BJOG Int J Obstet Gynaecol 109:534–539

    Article  Google Scholar 

  • Dubovy P, Brazda V, Klusakova I et al (2013) Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J Neuroinflammation 10:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein FHMD, Goldenberg RLMD, Hauth JCMD et al (2000) Intrauterine infection and preterm delivery. N Engl J Med 342:1500–1507

    Article  Google Scholar 

  • Ergenekon E, Gücüyener K, Erbaş D et al (2004) Cerebrospinal fluid and serum vascular endothelial growth factor and nitric oxide levels in newborns with hypoxic ischemic encephalopathy. Brain Dev 26:283–286

    Article  PubMed  Google Scholar 

  • Fan X, Heijnen CJ, Van Der Kooij MA et al (2009) The role and regulation of hypoxia-inducible factor-1α expression in brain development and neonatal hypoxic–ischemic brain injury. Brain Res Rev 62:99–108

    Article  CAS  PubMed  Google Scholar 

  • Fauchère J-C, Koller BM, Tschopp A et al (2015) Safety of early high-dose recombinant erythropoietin for neuroprotection in very preterm infants. J Pediatr 167:52–57.e53

    Article  PubMed  CAS  Google Scholar 

  • Felderhoff-Mueser U, Schmidt OI, Oberholzer A et al (2005) IL-18: a key player in neuroinflammation and neurodegeneration? Trends Neurosci 28:487–493

    Article  CAS  PubMed  Google Scholar 

  • Fellman V, Raivio KO (1997) Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr Res 41:599–606

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Rhodes PG, Bhatt AJ (2008) Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats. Pediatr Res 64:370–374

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Rhodes PG, Liu H et al (2009) Dexamethasone induces neurodegeneration but also up-regulates vascular endothelial growth factor A in neonatal rat brains. Neuroscience 158:823–832

    Article  CAS  PubMed  Google Scholar 

  • Fisher CJ Jr, Dhainaut JF, Opal SM et al (1994) Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 271:1836–1843

    Article  PubMed  Google Scholar 

  • Fisher CJ Jr, Agosti JM, Opal SM et al (1996) Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 334:1697–1702

    Article  CAS  PubMed  Google Scholar 

  • Fiuza C, Bustin M, Talwar S et al (2003) Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101:2652–2660

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos S, Mouchtouri A, Xanthou G et al (2005) Inflammatory chemokine expression in the peripheral blood of neonates with perinatal asphyxia and perinatal or nosocomial infections. Acta Paediatr 94:800–806

    Article  PubMed  Google Scholar 

  • Galasso JM, Liu Y, Szaflarski J et al (2000) Monocyte chemoattractant protein-1 is a mediator of acute excitotoxic injury in neonatal rat brain. Neuroscience 101:737–744

    Article  CAS  PubMed  Google Scholar 

  • Gantert M, Been JV, Gavilanes AWD et al (2010) Chorioamnionitis: a multiorgan disease of the fetus[quest]. J Perinatol Off J Calif Perinat Assoc 30:S21–S30

    Article  Google Scholar 

  • Gomez R, Romero R, Ghezzi F et al (1998) The fetal inflammatory response syndrome. Am J Obstet Gynecol 179:194–202

    Article  CAS  PubMed  Google Scholar 

  • Gotsch F, Romero R, Kusanovic JP et al (2007) The fetal inflammatory response syndrome. Clin Obstet Gynecol 50:652–683

    Article  PubMed  Google Scholar 

  • Hedtjarn M, Leverin AL, Eriksson K et al (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci Off J Soc Neurosci 22:5910–5919

    Article  CAS  Google Scholar 

  • Hedtjärn M, Mallard C, Arvidsson P et al (2004) White matter injury in the immature brain: role of interleukin-18. Neurosci Lett 373:16–20

    Article  CAS  Google Scholar 

  • Hotchkiss RS, Monneret G, Payen D (2013a) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13:260–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss RS, Monneret G, Payen D (2013b) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotoura E, Giapros V, Kostoula A et al (2011) Tracking changes of lymphocyte subsets and pre-inflammatory mediators in full-term neonates with suspected or documented infection. Scand J Immunol 73:250–255

    Article  CAS  PubMed  Google Scholar 

  • Irakam A, Miskolci V, Vancurova I et al (2002) Dose-related inhibition of proinflammatory cytokine release from neutrophils of the newborn by dexamethasone, betamethasone, and hydrocortisone. Biol Neonate 82:89–95

    Article  CAS  PubMed  Google Scholar 

  • Jenkins DD, Rollins LG, Perkel JK et al (2012) Serum cytokines in a clinical trial of hypothermia for neonatal hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 32:1888–1896

    Article  CAS  Google Scholar 

  • Jeong SJ, Han SH, Kim CO et al (2013) Anti-vascular endothelial growth factor antibody attenuates inflammation and decreases mortality in an experimental model of severe sepsis. Crit Care 17:R97

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaandorp JJ, Van Bel F, Veen S et al (2012) Long-term neuroprotective effects of allopurinol after moderate perinatal asphyxia: follow-up of two randomised controlled trials. Arch Dis Child Fetal Neonatal Ed 97:F162–F166

    Article  PubMed  Google Scholar 

  • Kelen D, Robertson NJ (2010) Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum Dev 86:369–377

    Article  PubMed  Google Scholar 

  • Kim CJ, Romero R, Chaemsaithong P et al (2015) Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol 213:S29–S52

    Article  PubMed  PubMed Central  Google Scholar 

  • Kollmann TR, Crabtree J, Rein-Weston A et al (2009) Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol 183:7150–7160

    Article  CAS  PubMed  Google Scholar 

  • Komine-Kobayashi M, Zhang N, Liu M et al (2006) Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 26:402–413

    Article  CAS  Google Scholar 

  • Kondo M, Itoh S, Isobe K et al (2000) Chemiluminescence because of the production of reactive oxygen species in the lungs of newborn piglets during resuscitation periods after asphyxiation load. Pediatr Res 47:524–527

    Article  CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science (New York, NY) 246:1306–1309

    Article  CAS  Google Scholar 

  • Levy O, Wynn JL (2014) A prime time for trained immunity: innate immune memory in newborns and infants. Neonatology 105:136–141

    Article  CAS  PubMed  Google Scholar 

  • Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  • Li L, Mbride DW, Doycheva D et al (2015) G-CSF attenuates neuroinflammation and stabilizes the blood–brain barrier via the PI3K/Akt/GSK-3β signaling pathway following neonatal hypoxia-ischemia in rats. Exp Neurol 272:135–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Mccullough LD (2013) Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 34:1121–1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv H, Wang Q, Wu S et al (2015) Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta 450:282–297

    Article  CAS  PubMed  Google Scholar 

  • Marodi L (2001) IL-12 and IFN-gamma deficiencies in human neonates. Pediatr Res 49:316

    Article  CAS  PubMed  Google Scholar 

  • Maroso M, Balosso S, Ravizza T et al (2011) Interleukin-1 type 1 receptor/toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med 270:319–326

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Kida H, Iha T et al (2014) Effects of hypothermia on ex vivo microglial production of pro- and anti-inflammatory cytokines and nitric oxide in hypoxic-ischemic brain-injured mice. Folia Neuropathol Assoc Pol Neuropathol Med Res Cent Pol Acad Sci 52:151–158

    CAS  Google Scholar 

  • Mesples B, Plaisant F, Gressens P (2003) Effects of interleukin-10 on neonatal excitotoxic brain lesions in mice. Dev Brain Res 141:25–32

    Article  CAS  Google Scholar 

  • Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Hida H, Masuda T et al (2008) Pretreatment with low doses of erythropoietin ameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model. Neonatology 94:255–266

    Article  CAS  PubMed  Google Scholar 

  • Murphy BP, Inder TE, Huppi PS et al (2001) Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 107:217–221

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Kusaka T, Koyano K et al (2014) Relationship between early changes in cerebral blood volume and electrocortical activity after hypoxic-ischemic insult in newborn piglets. Brain Dev 36:563–571

    Article  PubMed  Google Scholar 

  • Ng PC, Li K, Chui KM et al (2007) IP-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 61:93–98

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson A, Lacy JB (2015) Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev 3, Cd001239

    Google Scholar 

  • Okazaki K, Nishida A, Kato M et al (2006) Elevation of cytokine concentrations in asphyxiated neonates. Biol Neonate 89:183–189

    Article  CAS  PubMed  Google Scholar 

  • Okazaki K, Kondo M, Kato M et al (2008a) Temporal alterations in concentrations of sera cytokines/chemokines in sepsis due to group B streptococcus infection in a neonate. Jpn J Infect Dis 61:382–385

    CAS  PubMed  Google Scholar 

  • Okazaki K, Kondo M, Kato M et al (2008b) Elevation of high-mobility group box 1 concentration in asphyxiated neonates. Neonatology 94:105–109

    Article  CAS  PubMed  Google Scholar 

  • Okazaki K, Kusaka T, Kondo M et al (2012) Temporal alteration of serum G-CSF and VEGF levels in perinatal asphyxia treated with head cooling. Cytokine 60:812–814

    Article  CAS  PubMed  Google Scholar 

  • Okazaki K, Kusaka T, Kondo M, Kimura H (2015) Pathophysiological roles of cytokines in the brain during perinatal asphyxia. Ann Pediatr Child Health 3:1030

    Google Scholar 

  • Osuchowski MF, Welch K, Siddiqui J et al (2006) Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol 177:1967–1974

    Article  CAS  PubMed  Google Scholar 

  • Osuchowski MF, Craciun F, Weixelbaumer KM et al (2012) Sepsis chronically in MARS: systemic cytokine responses are always mixed regardless of the outcome, magnitude, or phase of sepsis. J Immunol 189:4648–4656

    Article  CAS  PubMed  Google Scholar 

  • Pammi M, Abrams SA (2015) Oral lactoferrin for the prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 2, Cd007137

    Google Scholar 

  • Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Weng XW, Chen W et al (2014) TREM-1 as a potential therapeutic target in neonatal sepsis. Int J Clin Exp Med 7:1650–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rangarajan V, Juul SE (2014) Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol 51:481–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Roka A, Beko G, Halasz J et al (2013) Changes in serum cytokine and cortisol levels in normothermic and hypothermic term neonates after perinatal asphyxia. Inflamm Res 62:81–87

    Article  CAS  PubMed  Google Scholar 

  • Romero R, Chaemsaithong P, Korzeniewski SJ et al (2016) Clinical chorioamnionitis at term II: the intra-amniotic inflammatory response. J Perinat Med 44:5–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  CAS  PubMed  Google Scholar 

  • Rossol M, Heine H, Meusch U et al (2011) LPS-induced cytokine production in human monocytes and macrophages. Crit Rev™ Immunol 31:379–446

    Article  CAS  Google Scholar 

  • Sahni R, Sanocka UM (2008) Hypothermia for hypoxic-ischemic encephalopathy. Clin Perinatol 35:717–734, vi

    Article  PubMed  Google Scholar 

  • Saraiva M, O’garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181

    Article  CAS  PubMed  Google Scholar 

  • Savman K, Blennow M, Gustafson K et al (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43:746–751

    Article  CAS  PubMed  Google Scholar 

  • Schelonka RL, Maheshwari A, Carlo WA et al (2011) T cell cytokines and the risk of blood stream infection in extremely low birth weight infants. Cytokine 53:249–255

    Article  CAS  PubMed  Google Scholar 

  • Schlager GW, Griesmaier E, Wegleiter K et al (2011) Systemic G-CSF treatment does not improve long-term outcomes after neonatal hypoxic–ischaemic brain injury. Exp Neurol 230:67–74

    Article  CAS  PubMed  Google Scholar 

  • Seo JW, Kim JH, Kim JH et al (2012) Time-dependent effects of hypothermia on microglial activation and migration. J Neuroinflammation 9:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma AA, Jen R, Butler A et al (2012) The developing human preterm neonatal immune system: a case for more research in this area. Clin Immunol 145:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shozushima T, Takahashi G, Matsumoto N et al (2011) Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J Infect Chemother Off J Jpn Soc Chemother 17:764–769

    Article  CAS  Google Scholar 

  • Si QS, Nakamura Y, Kataoka K (1997) Hypothermic suppression of microglial activation in culture: inhibition of cell proliferation and production of nitric oxide and superoxide. Neuroscience 81:223–229

    Article  CAS  PubMed  Google Scholar 

  • Sood BG, Shankaran S, Schelonka RL et al (2012) Cytokine profiles of preterm neonates with fungal and bacterial sepsis. Pediatr Res 72:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprung CL, Annane D, Keh D et al (2008) Hydrocortisone therapy for patients with septic shock. N Engl J Med 358:111–124

    Article  CAS  PubMed  Google Scholar 

  • Verrotti A, Basciani F, Trotta D et al (2001) Effect of anticonvulsant drugs on interleukins-1, -2 and -6 and monocyte chemoattractant protein-1. Clin Exp Med 1:133–136

    Article  CAS  PubMed  Google Scholar 

  • Volpe JJ (2001) Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 7:56–64

    Article  CAS  PubMed  Google Scholar 

  • Wynn J, Cornell TT, Wong HR et al (2010) The host response to sepsis and developmental impact. Pediatrics 125:1031–1041

    Article  PubMed  Google Scholar 

  • Yamaguchi M, Okamoto K, Kusano T et al (2015) The effects of xanthine oxidoreductase inhibitors on oxidative stress markers following global brain ischemia reperfusion injury in C57BL/6 mice. PLoS One 10, e0133980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang KD, Liou WY, Lee CS et al (1992) Effects of phenobarbital on leukocyte activation: membrane potential, actin polymerization, chemotaxis, respiratory burst, cytokine production, and lymphocyte proliferation. J Leukoc Biol 52:151–156

    Article  CAS  PubMed  Google Scholar 

  • Yossuck P, Nightengale BJ, Fortney JE et al (2008) Effect of morphine sulfate on neonatal neutrophil chemotaxis. Clin J Pain 24:76–82

    Article  PubMed  Google Scholar 

  • Zhang ZG, Zhang L, Tsang W et al (2002) Correlation of VEGF and angiopoietin expression with disruption of blood–brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 22:379–392

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Takahashi HK, Liu K et al (2011) Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke 42:1420–1428

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Okazaki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Okazaki, K., Nishida, A., Kimura, H. (2018). Inflammatory Mediators in Neonatal Asphyxia and Infection. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_248

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_248

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics