Skip to main content

Physical Environment for Newborns: The Thermal Environment

  • Reference work entry
  • First Online:
Neonatology

Abstract

The exchange of heat between the infant’s skin and the environment is influenced by insulation provided by the skin, the permeability of the skin, and the environmental factors such as the ambient temperature and humidity, airflow velocity, and characteristics of surfaces where the infant is positioned. High incidence of postnatal hypothermia has been reported in high- as well as low-resource countries, and it is an independent predictor of neonatal morbidity and mortality. All efforts should be put in place to prevent heat losses at birth, especially in very preterm infants. Interventions include delivery room temperature >25 °C, use of infant warmers, exothermic mattress, woolen caps, plastic wraps, and humidified and heated gases. Skin-to-skin contact has be considered, especially in low-resource settings. In addition to specific interventions, quality improvement initiatives, including the use of checklists and continuous feedbacks with the staff involved in the management of the neonate, contribute to reduce postnatal thermal losses in very preterm infants. In this chapter, we report the mechanisms of thermal homeostasis in the newborn infant and describe the clinical management of the neonates, especially very preterm infants, to prevent heat losses at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 479.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson SK Jr, Gandy GM, James LS (1965) The influence of thermal factors on oxygen consumption of newborn human infants. J Pediatr 66:495–508

    Article  Google Scholar 

  • Agren J, Sjors G, Sedin G (1998) Transepidermal water loss in infants born at 24 and 25 weeks of gestation. Acta Paediatr 87:1185–1190

    Article  CAS  Google Scholar 

  • Agren J, Sjors G, Sedin G (2006) Ambient humidity influences the rate of skin barrier maturation in extremely preterm infants. J Pediatr 148:613–617

    Article  Google Scholar 

  • Bauer K, Uhrig C, Sperling P et al (1997) Body temperature and oxygen consumption during skin-to-skin (kangaroo) care in stable preterm infants weighting less than 1500 grams. J Pediatr 130:240–244

    Article  CAS  Google Scholar 

  • Bauer K, Pyper A, Sperling P et al (1998) Effects of gestational and postnatal age on body temperature, oxygen consumption, and activity during early skin-to-skin contact between preterm infants of 25–30 week gestation and their mothers. Pediatr Res 44:247–251

    Article  CAS  Google Scholar 

  • Baumgart S (1982) Radiant energy and insensible water loss in the premature newborn infant nursed under a radiant warmer. Clin Perinatol 9:483–503

    Article  CAS  Google Scholar 

  • Bell EF, Weinstein MR, Oh W (1980) Heat balance in premature infants: comparative effects of convectively heated incubator and radiant warmer, with and without plastic heat shield. J Pediatr 96:460–465

    Article  CAS  Google Scholar 

  • Bruck (1978) Heat production and temperature regulation. In: Stave U, Weech A (eds) Perinatal physiology. Plenum Medical Book Company, New York

    Google Scholar 

  • Chaput de Saintonge DM, Cross KW, Hathorn MKS et al (1979) Hats for the newborn infant. BMJ 2:570–571

    Article  CAS  Google Scholar 

  • Chawla S, Amaram A, Gopal SP et al (2011) Safety and efficacy of Trans-warmer mattress for preterm neonates: results of a randomized controlled trial. J Perinatol 31:780–784

    Article  CAS  Google Scholar 

  • Cordaro T, Gibbons Phalen A et al (2012) Hypothermia and occlusive skin wrap in the low birthweight premature infant: an evidentiary review. Newborn Infant Nurs Rev 12:78–85

    Article  Google Scholar 

  • Cornblath M, Schwrtz R (1966) Disorders of carbohydrate metabolism in infancy. WB Saunders, Philadelphia

    Google Scholar 

  • Cramer K, Wiebe N, Hartling L et al (2005) Heat loss prevention: a systematic review of occlusive skin wrap for premature neonates. J Perinatol 25:763–769

    Article  Google Scholar 

  • Dahm LS, James LS (1972) Newborn temperature and calculated heat loss in delivery room. Pediatrics 49:504–513

    CAS  PubMed  Google Scholar 

  • Doglioni N, Cavallin F, Mardegan V et al (2014) Total body polyethylene wraps for preventing hypothermia in preterm infants: a randomized trial. J Pediatr 165:261–266.e1

    Article  Google Scholar 

  • Fanaroff AA, Wald M, Gruber HS et al (1972) Insensible water low in low birth weight infants. Pediatrics 50:236–245

    CAS  PubMed  Google Scholar 

  • Flenady VJ, Woodgate PG (2003) Radiant warmers versus incubators for regulating body temperature in newborn infants. Cochrane Database Syst Rev 2, CD000435

    Google Scholar 

  • Gray PH, Flenady V (2003) Cot-nursing versus incubator care in preterm infants. Cochrane Database Syst Rev 1, CD003062

    Google Scholar 

  • Greenspan JS, Cullen AB, Touch SM et al (2001) Thermal stability and transition studies with a hybrid warming device for neonates. J Perinatol 21:167–173

    Article  CAS  Google Scholar 

  • Hammarlund K, Sedin G (1979) Transepidermal water loss in newborn infants. III. Relation to gestational age. Acta Paediatr Scand 68:795–801

    Article  CAS  Google Scholar 

  • Hammarlund K, Sedin G (1982) Transepidermal water loss in newborn infants. VI. Heat exchange with the environment in relation to gestational age. Acta Paediatr Scand 71:191–196

    Article  CAS  Google Scholar 

  • Hammarlund K, Nilsson GE, Oberg PA et al (1980) Transepidermal water loss in newborn infants. V. Evaporation from the skin and heat exchange during the first Hours of life. Acta Paediatr Scand 69:385–392

    Article  CAS  Google Scholar 

  • Hammarlund K, Sedin G, Stromberg B (1983) Transepidermal water loss in newborn infants. VIII. Relation to gestational age and post-natal age in appropriate and small for gestational age infants. Acta Paediatr Scand 72:721–728

    Article  CAS  Google Scholar 

  • Hammarlund K, Norsted T, Riesenfeld T et al (1985) Endotracheal intubation influences respiratory water loss during heat stress in young lambs. J Appl Physiol 79:801–804

    Article  Google Scholar 

  • Hammarlund K, Sromberg B, Sedin G (1986) Heat loss from the skin of preterm and fullterm newborn infants during the first weeks after birth. Biol Neonat 50:1–10

    Article  CAS  Google Scholar 

  • Hammarlund K, Reisenfield T, Sedin G (1988) Measurements of respiratory water loss in newborn lambs. Acta Physiol Scand 127:61–65

    Article  Google Scholar 

  • Hey EN (1969) The relation between environmental temperature and oxygen consumption in newborn baby. J Physiol 200:589–603

    Article  CAS  Google Scholar 

  • Hey EN, Katz G (1969) Evaporative water loss in newborn baby. J Physiol 200:605–619

    Article  CAS  Google Scholar 

  • Houdas Y, Ring EFJ (1982) Human body temperature. Its measurement and regulation. Plenum Press, New York

    Book  Google Scholar 

  • Ibrahim CPH, Yoxall CW (2010) Use of self-heating gel mattresses eliminates admission hypothermia in infants born below 28 weeks gestation. Eur J Pediatr 169:795–799

    Article  Google Scholar 

  • Jia YS, Lin ZL, Lv H et al (2013) Effect of delivery room temperature on the admission temperature of premature infants: a randomized controlled trial. J Perinatol 33:264–267

    Article  Google Scholar 

  • Kattwinkel J, Perlman JM, Aziz K et al (2010) Part 15: neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122:S909–S919

    Article  Google Scholar 

  • Kent AL, Williams J (2008) Increasing ambient operating theatre temperature and wrapping in polyethylene improves admission temperature in premature infants. J Paediatr Child Health 44:325–331

    Article  Google Scholar 

  • Kjartansson S, Hammarlund K, Riesenfeld T et al (1992a) Respiratory water loss and oxygen consumption in newborn infants during phototherapy. Acta Paediatr 81:769–773

    Article  CAS  Google Scholar 

  • Kjartansson S, Hammarlund K, Sedin G (1992b) Insensible water loss from the skin during phototherapy in term and preterm infants. Acta Paediatr 81:764–768

    Article  CAS  Google Scholar 

  • Kjartansson S, Arsan S, Hammarlund K et al (1995) Water loss from the skin of term and preterm infants nursed under a radiant heater. Pediatr Res 37:233–238

    Article  CAS  Google Scholar 

  • Klein AD, Scammon RE (1930) The regional growth of the surface area of the human body in prenatal life. Proc Soc Exp Med Biol 27:463–466

    Article  Google Scholar 

  • Knobel RB, Wimmer JE Jr, Holbert D (2005) Heat loss prevention for preterm infants in the delivery room. J Perinatol 25:304–308

    Article  Google Scholar 

  • Lang N, Bromiker R, Arad I (2004) The effect of wool vs. cotton head covering and length of stay with the mother following delivery on infant temperature. Int J Nurs Stud 41:843–846

    Article  CAS  Google Scholar 

  • Laptook AR, Salhab W, Bhaskar B et al (2007) Neonatal Research Network. Admission temperature of low birth weight infants: predictors and associated morbidities. Pediatrics 119:e643–e649

    Article  Google Scholar 

  • Lyu Y, Shah PS, Ye XY et al (2015) Association between admission temperature and mortality and major morbidity in preterm infants born at fewer than 33 weeks’ gestation. JAMA Pediatr 169, e150277

    Article  Google Scholar 

  • Marks KH, Gunther RC, Rossi JA et al (1980) Oxygen consumption and insensible water loss in premature infants under radiant heaters. Pediatrics 66:228–232

    CAS  PubMed  Google Scholar 

  • McCall EM, Alderdice F, Halliday HL et al (2010) Interventions to prevent hypothermia at birth in preterm and/or low birthweight infants. Cochrane Database Syst Rev 17(3), CD004210

    Google Scholar 

  • McCarthy LK, O’Donnell CP (2011) Warming preterm infants in the delivery room: polyethylene bags, exothermic mattresses or both? Acta Paediatr 100:1534–1537

    Article  Google Scholar 

  • McCarthy LK, Molloy EJ, Twomey AR et al (2013) A randomized trial of exothermic mattresses for preterm newborns in polyethylene bags. Pediatrics 132:e135–e141

    Article  Google Scholar 

  • Meyer MP, Hou D, Ishrar NN et al (2015) Initial respiratory support with cold, dry gas versus heated humidified gas and admission temperature of preterm infants. J Pediatr 166:245–250

    Article  Google Scholar 

  • Miller SS, Lee HC, Gould JB et al (2011) Hypothermia in very low birth weight infants: distribution, risk factors and outcomes. J Perinatol 31(Suppl 1):S49–S56

    Article  Google Scholar 

  • Moore ER, Anderson GC, Bergman N et al (2012) Early skin-to-skin contact for mothers and their healthy newborn infants. Cochrane Database Syst Rev 16(5), CD003519

    Google Scholar 

  • Nilsson GE (1977) Measurement of water exchange through skin. Med Biol Eng Comput 15:209–218

    Article  CAS  Google Scholar 

  • Nimbalkar SM, Patel VK, Patel DV et al (2014) Effect of early skin-to-skin contact following normal delivery on incidence of hypothermia in neonates more than 1800 g: randomized control trial. J Perinatol 34:364–368

    Article  CAS  Google Scholar 

  • Okken A, Blijham C, Franz W et al (1982) Effects of forced convection of heated air on insensible water loss and heat loss in preterm infants in incubators. J Pediatr 101:108–112

    Article  CAS  Google Scholar 

  • Pribylova H, Znamenacek K (1966) The effect of body temperature on the level of carbohydrate metabolites and oxygen consumption in the newborn. Pediatrics 37:743–749

    CAS  PubMed  Google Scholar 

  • Rech Morassutti F, Cavallin F, Zaramella P (2015) Association of rewarming rate on neonatal outcomes in extremely low birth weight infants with hypothermia. J Pediatr 167:557–561.e1-2

    Article  Google Scholar 

  • Reilly MC, Vohra S, Rac VE et al (2015) Randomized trial of occlusive wrap for heat loss prevention in preterm infants. J Pediatr 166:262–268.e2

    Article  Google Scholar 

  • Riesenfeld T, Hammarlund K, Sedin G (1987a) Respiratory water loss in fullterm infants on their first day after birth. Acta Paediatr Scand 76:647–653

    Article  CAS  Google Scholar 

  • Riesenfeld T, Hammarlund K, Sedin G (1987b) Respiratory water loss in relation to activity in fullterm infants an their first day after birth. Acta Paediatr Scand 76:889–893

    Article  CAS  Google Scholar 

  • Riesenfeld T, Hammarlund K, Sedin G (1988) Influence of radiant heat stress on respiratory water loss in newborn lambs. Biol Neonate 53:290–294

    Article  CAS  Google Scholar 

  • Riesenfeld T, Hammarlund K, Sedin G (1990) The effect of a warm environment on respiratory water loss in fullterm newborn infants on their first day after birth. Acta Paediatr Scand 79:893–898

    Article  CAS  Google Scholar 

  • Riesenfeld T, Hammarlund K, Norsted T et al (1994) The temperature of inspired air influences respiratory water loss in young lambs. Biol Neonate 65:326–330

    Article  CAS  Google Scholar 

  • Riesenfeld T, Hammarlund K, Sedin G (1995) Respiratory water loss in relation to gestational age in infants on their first day after birth. Acta Paediatr 84:1056–1059

    Article  CAS  Google Scholar 

  • Rowe MI, Weinberg G, Andrews W (1983) Reduction of neonatal heat loss by an insulated head cover. J Pediatr Surg 18:909–913

    Article  CAS  Google Scholar 

  • Sarman I, Can G, Tunell R (1989) Rewarming preterm infant on a heated, water filled mattress. Arch Dis Child 64:687–692

    Article  CAS  Google Scholar 

  • Sedin G (1995) Physics of neonatal heat transfer, routes of heat loss and heat gain. In: Okken A, Kock J (eds) Thermoregulation of sick and low birth weight neonates. Springer, Berlin, p 21

    Chapter  Google Scholar 

  • Sedin G (1996a) Fluid management in the extremely preterm infant. In: Hansen TN, McIntosh N (eds) Current topics in neonatology. WB Saunders Company, London, pp 50–66

    Google Scholar 

  • Sedin G (1996b) Heat loss from the respiratory tract of newborn infants ventilated during transport. In: The proceeding of the XV European Congress on Perinatal Medicine. Glasgow, p 511

    Google Scholar 

  • Sedin G (2004) Physics and physiology of human neonatal incubator. In: Polin R, Fox W (eds) Fetal and neonatal physiology. Saunders Company, Philadelphia, p 570

    Chapter  Google Scholar 

  • Singh A, Duckett J, Newton T et al (2010) M. Improving neonatal unit admission temperatures in preterm babies: exothermic mattresses, polythene bags or a traditional approach? J Perinatol 30:45–49

    Article  CAS  Google Scholar 

  • Sjörs G, Hammarlund K, Sedin G (1992a) Thermal balance in term and preterm newborn infants nursed in an incubator equipped with a radiant heat source. Pediatr Res 32:631

    Article  Google Scholar 

  • Sjörs G, Hammarlund K, Oberg PA et al (1992b) An evaluation of environment and climate control in seven infant incubators. Biomed Instrum Technol 26:294–301

    PubMed  Google Scholar 

  • Sjors G, Hammarlund K, Kjartasson S et al (1994) Respiratory water loss and oxygen consumption in fullterm infants exposed to cold air on the first day after birth. Acta Paediatr 83:802–807

    Article  CAS  Google Scholar 

  • Sjörs G, Hammarlund K, Sedin G (1997) Thermal balance in term and preterm infants nursed in an incubator with a radiant heat source. Acta Paediatr 86:403–409

    Article  Google Scholar 

  • Sosulski R, Polin R, Baumgart S (1983) Respiratory water loss and heat balance in intubated infants receiving humidified air. J Pediatr 103:307–310

    Article  CAS  Google Scholar 

  • Stern L, Lees MH, Leduc J (1965) Environmental temperature on the level of carbohydrate and catecholamine excretion in newborn infants. Pediatrics 36:367–373

    CAS  PubMed  Google Scholar 

  • Stothers JK (1981) Head insulation and heat loss in the newborn. Arch Dis Child 56:530–534

    Article  CAS  Google Scholar 

  • Stromberg B, Oberg PA, Sedin G (1983) Transepidermal water loss in newborn infants. X Effects of central cold-stimulation on evaporation rate and skin blood flow. Acta Paediatr Scand 71:735–739

    Article  Google Scholar 

  • Sulyok E, Jequier E, Prod’hom LS (1973) Respiratory contribution to the thermal balance of the newborn infant under various ambient conditions. Pediatrics 51:641–650

    CAS  PubMed  Google Scholar 

  • te Pas AB, Lopriore E, Dito I et al (2010) Humidified and heated air during stabilization at birth improves temperature in preterm infants. Pediatrics 125:e1427–e1432

    Article  Google Scholar 

  • Trevisanuto D, Coretti I, Doglioni N et al (2011) Effective temperature under radiant infant warmer: does the device make a difference? Resuscitation 82:720–723

    Article  Google Scholar 

  • Vohra S, Frent G, Campbell V et al (1999) Effect of polyethylene occlusive skin wrapping on heat loss in very low birth weight infants at delivery: a randomized trial. J Pediatr 134:547–551

    Article  CAS  Google Scholar 

  • Vohra S, Roberts RS, Zhang B et al (2004) Heat loss prevention (HeLP) in the delivery room: a randomized controlled trial of polyethylene occlusive skin wrapping in very preterm infants. J Pediatr 145:750–753

    Article  Google Scholar 

  • Wheldon AE (1982) Energy balance in the newborn baby: use of a manikin to estimate radiant and convective heat loss. Phys Med Biol 27:285–296

    Article  CAS  Google Scholar 

  • Whitelaw A, Heisterkamp G, Steatlh K et al (1988) Skin to skin contact for very low birth weight infants and their mothers. Arch Dis Child 63:1377–1381

    Article  CAS  Google Scholar 

  • WHO Library Cataloguing-in-Publication Data. World Health Organization (2003) Managing newborn problems: a guide for doctors, nurses, and midwives. World Health Organization pp. F30–F31

    Google Scholar 

  • Wyckoff MH, Aziz K, Escobedo MB et al (2015) Part 13: neonatal resuscitation: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132:S543–S560

    Article  Google Scholar 

  • Wyllie J, Bruinenberg J, Roehr CC et al (2015) European resuscitation council guidelines for resuscitation 2015: section 7. Resuscitation and support of transition of babies at birth. Resuscitation 95:249–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Trevisanuto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trevisanuto, D., Sedin, G. (2018). Physical Environment for Newborns: The Thermal Environment. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29489-6_172

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29489-6_172

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29487-2

  • Online ISBN: 978-3-319-29489-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics