Skip to main content

Laser-Induced Surface Acoustic Waves for Material Testing

  • Reference work entry
  • First Online:
Handbook of Advanced Nondestructive Evaluation

Abstract

Surface acoustic waves are elastic vibrations which propagate along the surface of the material. They are very sensitive to films and surface treatments, since the wave energy is concentrated near the surface. Therefore, there is a growing interest in using this acoustic wave mode for nondestructive testing. Whereas the wave velocity is constant for homogenous materials, the velocity c depends on frequency f for coated and surface-modified materials. This phenomenon, termed dispersion, can be used to determine important film parameters such as Young’s modulus, density, or film thickness. Especially, Young’s modulus is an interesting parameter for nondestructive characterization of film materials, since it depends on the bonding conditions and the microstructure. In order to determine the parameters of the film material, the dispersion curve c(f) is measured and fitted by a theoretical curve. Many experimental setups use pulse lasers to create surface acoustic waves. Short laser pulses can create wideband acoustic impulses. The laser is a non-contact acoustic source that can precisely be positioned on the material surface, which enables an accurate measurement of the dispersion. Five examples of application are presented which demonstrate that surface acoustic waves can be used for very different problems of surface characterization: diamond-like carbon films (ta-C) with thickness down to few nanometers, porous metal films of titanium with a thickness in the micrometer range, thermal-sprayed ceramic coatings with a thickness of some hundreds of micrometers, laser-hardened steels up to the depth of one millimeter, and subsurface damage in semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhmanov SA, Gusev VE (1992) Laser excitation of ultrashort acoustic pulses: new possibilities in solid-state spectroscopy, diagnostics of fast processes, and nonlinear acoustics. Sov Phys Usp 35:153–191

    Article  Google Scholar 

  • Arnold W, Betz B, Hoffmann B (1985) Efficient generation of surface acoustic waves by thermoelasticity. Appl Phys Lett 47:672–674. https://doi.org/10.1063/1.96054

    Article  Google Scholar 

  • Asmani M, Kermel C, Leriche A, Ourak MJ (2001) Influence of porosity on Young’s modulus and Poisson’s ratio in alumina. Eur Ceram Soc 21:1081–1086

    Article  Google Scholar 

  • Aussel JD, Monchalin J (1989) Precision laser-ultrasonic velocity measurement and elastic constant determination. Ultrasonics 27:165–177. https://doi.org/10.1016/0041-624X(89)90059-0

    Article  Google Scholar 

  • Bennis A, Lomonosov M, Shen ZH, Hess P (2006) Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks. Appl Phys Lett 88:101915-1–101915-3. https://doi.org/10.1063/1.2181187

    Article  Google Scholar 

  • Berger LM, Schneider D, Großer T (2007) Non-destructive testing of coatings by surface acoustic waves. In: Marple BR, Hyland MM, Lau YC, Li CJ, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, pp 916–921

    Google Scholar 

  • Berger LM (2011) Entwicklung einer zerstörungsfreuen Prüfmethode zur Messung mechanischer Kennwerte und der Porosität an thermisch gespritzten Schichten. Final report of the IGF Project 16.029 BR / DVS No. 02.056, promoted by the German Ministry of Economic Affairs and Technology (BMWi) via AiF within the framework of the program for the promotion of joint industrial research and development, Fraunhofer Institute for Material and Beam Technology (IWS) Dresden

    Google Scholar 

  • Berger LM, Schneider D, Barbosa M, Puschmann R (2012) Laser acoustic surface waves for the non-destructive characterization of thermally sprayed coatings. Therm Spray Bull 64(1):56–64

    Google Scholar 

  • Bescond C, Kruger SE, Le’vesque D, Lima RS, Marple BR (2007) In-situ simultaneous measurement of thickness, elastic moduli and density of thermal sprayed WC-Co coatings by Laser-Ultrasonics. J Therm Spray Technol 16:238–244. Thermal spray coatings

    Article  Google Scholar 

  • Carvalho S, Vaz F, Rebouta L, Schneider D, Cavaleiro A, Alves E (2001) Elastic properties of (Ti,Al,Si)N nanocomposite films. Surf Coat Technol 142–144:110–116

    Article  Google Scholar 

  • Coufal H, Grygier R, Hess P, Neubrand A (1992) A broadband detection of laser-excited surface acoustic waves by a novel transducer employing ferroelectric polymers. J Acoust Soc Am 92:2980–2983

    Article  Google Scholar 

  • Dobmann G, Kern R, Altpeter I, Theiner W (1988) Quantitative hardening-depth-measurements up to 4mm by means if micro-magnetic microstructure multi-parameter analysis (3MA). In: Thomson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vol 7b. Springer, Boston, pp 1471–1475

    Chapter  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc A241:376–396. https://doi.org/10.1098/rspa.1957.0133

    Article  MathSciNet  MATH  Google Scholar 

  • Farnell GW (1970) Properties of elastic surface waves. In: Mason WP, Thurston PM (eds) Physical acoustics, vol VI. Academic, New York/London, pp 109–166

    Google Scholar 

  • Farnell GW, Adler EL (1972) Elastic wave propagation in thin layers. In: Mason WP, Thurston RN (eds) Physical acoustics, vol IX. Academic, New York/London, pp 35–127. https://doi.org/10.1016/B978-0-12-395670-5.50007-6

    Chapter  Google Scholar 

  • Flannery CM, Murray C, Streiter I, Schulz SE (2001) Characterization of thin-film aerogel porosity and stiffness with laser-generated surface acoustic waves. Thin Solid Films 388:1–4

    Article  Google Scholar 

  • Grünwald E, Nuster R, Treml R, Kiener D, Paltauf G, Brunner R (2015) Young’s Modulus and Poisson’s ratio characterization of tungsten thin films via laser ultrasound. nanoFIS 2014 Mater Today 2:4289–4294

    Google Scholar 

  • Hashin ZJ (1962) The elastic moduli of heterogeneous materials. Appl Mech 29:143–150

    Article  MathSciNet  Google Scholar 

  • Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43:17–34

    Google Scholar 

  • Hess P (2002) Surface acoustic waves in materials science. Phys Today 55:42:47

    Article  Google Scholar 

  • Hess P (2009) Determination of linear and nonlinear mechanical properties of diamond by laser-based surface acoustic waves. Diamond Relat Mater 18:186–190. https://doi.org/10.1016/j.diamond.2008.10.005

    Article  Google Scholar 

  • Hill R (1965) Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:89–101

    Article  Google Scholar 

  • Jiang X, Wang M, Schmidt K, Dunlop E, Haupt J, Gissler W (1991) Elastic constants and hardness of ion beam sputtered TiNx films measured by Brillouin scattering and depth sensing indentation. J Appl Phys 69:3053–3057. https://doi.org/10.1063/1.348963

    Article  Google Scholar 

  • Karabutov AA (1985) Laser excitation of surface acoustic waves: a new direction in opto-acoustic spectroscopy of a solid. Sov Phys Usp 28:1042–1051

    Article  Google Scholar 

  • Knopoff L (1964) A matrix method for elastic wave problems. Bull Seism Soc Am 54:431–438

    Google Scholar 

  • Kolomenskii AA, Szabadi M, Hess P (1995) Laser diagnostics of C60 and C70 films by broadband surface acoustic wave spectroscopy. Appl Surf Sci 86:591–596

    Article  Google Scholar 

  • Kreher W, Janssen R (1992) On microstructural residual stresses in particle reinforced ceramics. J Eur Ceram Soc 10:167–173

    Article  Google Scholar 

  • Kreher W, Pompe W (eds) (1989) Internal stresses in heterogeneous solids. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  • Kröner E (1961) Zur plastischen Verformung des Vielkristalls. Acta Metall 9:155–161

    Article  Google Scholar 

  • Kurdjumov GV (1960) Phenomena occurring in the quenching and tempering of steels. J Iron Steel Inst 195:26–48

    Google Scholar 

  • Kuschnereit R, Fath H, Kolomenskii AA, Szabadi M, Hess P (1995) Mechanical and elastic properties of amorphous hydrogenated silicon films studied by broadband surface acoustic wave spectroscopy. Appl Phys A61:269–276. https://doi.org/10.1007/BF01538192

    Article  Google Scholar 

  • Landau LD, Lifschitz EM (1975) Lehrbuch der theoretischen Physik. vol. 7. Elastizitätstheorie. Akademie Verlag, Berlin

    Google Scholar 

  • Lee RE, White RM (1968) Excitation of surface elastic waves by transient surface heating. Appl Phys Lett 12:12–14. https://doi.org/10.1063/1.1651832

    Article  Google Scholar 

  • Leonhardt M, Schneider D, Kaspar J, Schenk S (2004) Characterizing the porosity in thin titanium films by laser-acoustics. Surf Coat Technol 185:292–302. https://doi.org/10.1016/j.surfcoat.2004.01.020

    Article  Google Scholar 

  • Lima RS, Kruger SE, Lamouche G, Marple BR (2005) Elastic Modulus measurements via laser-ultrasonic and Knoop indentation. J Therm Spray Technol 14:52–60. https://doi.org/10.1361/10599630522701

    Article  Google Scholar 

  • Lomonosov AM, Mayer AP, Hess P (2001) Laser-based surface acoustic waves in material science. In: Levy M, Bass HE, Stern R (eds) Modern acoustical techniques for the measurement of mechanical properties, vol 39. Academic, San Diego, pp 65–134

    Chapter  Google Scholar 

  • Lowe MJS (1995) Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans Ultrason Ferroelectr Freq Control 42:525–542. https://doi.org/10.1109/58.393096

    Article  Google Scholar 

  • Lyamshev LM (1981) Optoacoustic sources of sound. Sov Phys Usp 24:977–995

    Article  Google Scholar 

  • Maier-Schneider D, Ersoy A, Maibach J, Schneider D, Obermeier E (1995) Influence of annealing on the elastic properties of LPCVD silicon nitride and LPCVD polysilicon. Sens Mater 7:121–129

    Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  MathSciNet  Google Scholar 

  • Maznev AA, Mazurenko A, Li Z, Gostein M (2003) Laser-based surface acoustic wave spectrometer for industrial applications. Rev Sci Instrum 74:667–669. https://doi.org/10.1063/1.1512680

    Article  Google Scholar 

  • Mittal KL (ed) (1976) Adhesion measurement of thin films, thick films and bulk coatings, ASTM Symposium Philadelphia, ASTM special technical publication, vol 640. ASTM, Philadelphia

    Google Scholar 

  • Monchalin JP (1985) Optical detection of ultrasound at a distance using a confocal Fabry–Perot interferometer. Appl Phys Lett 47:14–16. https://doi.org/10.1063/1.96411

    Article  Google Scholar 

  • Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coat Technol 125:322–330. https://doi.org/10.1016/S0257-8972(99)00586-1

    Article  Google Scholar 

  • Musil J, Kunc F, Zeman H, Polakova H (2002) Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf Coat Technol 154:304–313. https://doi.org/10.1016/S0257-8972(01)01714-5

    Article  Google Scholar 

  • Neubrand A, Hess P (1992) Laser generation and detection of surface acoustic waves: elastic properties of surface layers. J Appl Phys 71:227–238

    Article  Google Scholar 

  • O’Connor DJ, Sexton BA, Smart R, St C (eds) (1992) Surface analysis methods in materials science. Springer, Heidelberg

    Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  • Ollendorf H, Schneider D (1999) A comparative study of adhesion test methods for hard coatings. Surf Coat Technol 113:86–102

    Article  Google Scholar 

  • Paehler D, Schneider D, Herben M (2007) Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics. Microelectron Eng 84:340–354. https://doi.org/10.1016/j.mee.2006.11.001

    Article  Google Scholar 

  • Rayleigh L (1885) On waves propagating along the plane surface of an elastic solid. Proc Lond Math Soc 17:4

    Article  MathSciNet  Google Scholar 

  • Rebholz C, Leyland A, Matthews A, Charitidis C, Logothetidis S, Schneider D (2006) Correlation of elastic modulus, hardness and density for sputtered TiAlBN thin films. Thin Solid Films 514:81–86

    Article  Google Scholar 

  • Retzko I, Unger W (2003) Analysis of carbon materials by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Adv Eng Mater 5:519–522. https://doi.org/10.1002/adem.200320138

    Article  Google Scholar 

  • Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37:129–281

    Article  Google Scholar 

  • Rogers JA, Yang Y, Nelson KA (1994) Elastic Modulus and In-Plane Thermal Diffusivity Measurements in Thin Polyimide Films Using Symmetry-Selective Real-Time Impulsive Stimulated Thermal Scattering. Appl Phys A 58:523–534

    Article  Google Scholar 

  • Royer D (2001) Mixed matrix formulation for the analysis of laser-generated acoustic waves by thermoelastic line sources. Ultrasonics 39:345–354

    Article  Google Scholar 

  • Royer D, Chenu C (2000) Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source. Ultrasonics 38:891–895

    Article  Google Scholar 

  • Ruiz AM, Nagy PB (2002) Diffraction correction for precision surface acoustic wave. J Acoust Soc Am 112(3):835–842. https://doi.org/10.1121/1.1497368

    Article  Google Scholar 

  • Sachse W, Pao YH (1978) On the determination of phase and group velocities of dispersive waves in solids. J Appl Phys 49:4320–4327. https://doi.org/10.1063/1.325484

    Article  Google Scholar 

  • Schneider D (2013) Laser acoustic testing machine for the surface analysis of silicon blocks and solar wafers. Annu Rep Fraunhofer IWS Dresden, pp 52–53

    Google Scholar 

  • Schneider D, Franke K (1990) Anwendung interdigitaler Oberflächenwellenwandler für die zertörungsfreie Werkstoffprüfung. Feingerätetechnik 39:117–120

    Google Scholar 

  • Schneider D, Schwarz T (1997) A photoacoustic method for characterizing thin films. Surf Coat Technol 91:136–146

    Article  Google Scholar 

  • Schneider D, Herrmann K, Brenner B, Schläfer D, Winderlich B (1986) Investigation of the influence of grinding on regions near the surface by ultrasonic surface waves. Cryst Res Technology 21:897–905

    Article  Google Scholar 

  • Schneider D, Schwarz T, Schultrich B (1992) Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves. Thin Solid Films 219:92–102

    Article  Google Scholar 

  • Schneider D, Schwarz T, Buchkremer HP, Stöver D (1993) Non-destructive characterization of plasma-sprayed ZrO2 coatings by ultrasonic surface waves. Thin Solid Films 224:177–183

    Article  Google Scholar 

  • Schneider D, Schwarz T, Scheibe HJ, Panzner M (1997) Non-destructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Thin Solid Films 295:107–116

    Article  Google Scholar 

  • Schneider D, Schultrich B, Scheibe HJ, Ziegele H, Griepentrog M (1998a) A laser-acoustic method for testing and classifying hard surface layers. Thin Solid Films 332:157–163

    Article  Google Scholar 

  • Schneider D, Meyer CF, Mai H, Schöneich B, Ziegele H, Scheibe HJ, Lifshitz Y (1998b) Nondestructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Diam Relat Mater 7:973–980

    Article  Google Scholar 

  • Schneider D, Hammer R, Jurisch M (1999) Non-destructive testing of damage layers in GaAs wafers by surface acoustic waves. Semicond Sci Technol 14:93–98. https://doi.org/10.1088/0268-1242/14/1/015

    Article  Google Scholar 

  • Schneider D, Siemroth P, Schuelke T, Berthold J, Schultrich B, Schneider HH, Ohr R, Petereit B, Hillgers H (2002a) Quality control of ultra-thin and super-hard coatings by laser-acoustics. Surf Coat Technol 153:252–260. https://doi.org/10.1016/S0257-8972(01)01664-4

    Article  Google Scholar 

  • Schneider D, Stiehl E, Hammer R, Franke A, Riegert R, Schuelke T (2002b) Nondestructive testing of damage layers in semiconductor materials by surface acoustic waves. Proc SPIE 4692:195–203. https://doi.org/10.1117/12.475660

    Article  Google Scholar 

  • Schneider D, Frühauf S, Schulz SE, Gessner T (2005) The current limits of the laser-acoustic test method to characterize low-k films. Microelectron Eng 82:393–398. https://doi.org/10.1016/j.mee.2005.07.073

    Article  Google Scholar 

  • Schneider D (2012) Using laser induced surface acoustic waves to characterize thin films and material surfaces. IEEE International Ultrasonics Symposium, IUS pp. 269–272. https://doi.org/10.1109/ULTSYM.2012.0066

  • Schneider D, Leson A, Berger LM (2012a) Laserakustik für Schicht- und Oberflächenprüfung. Vakuum in Forschung und Praxis 24(4):17–23. https://doi.org/10.1002/vipr.201200499

    Article  Google Scholar 

  • Schneider D, Hofmann R, Schwarz T, Grosser T, Hensel E (2012b) Evaluating surface hardened steels by laser-acoustics. Surf Coat Technol 206:2079–2088. https://doi.org/10.1016/j.surfcoat.2011.09.017

    Article  Google Scholar 

  • Schuelke T, Anders A, Siemroth P (1997) Macroparticle filtering of high-current vacuum arc plasmas. IEEE Trans Plasma Sci 25:660–664. https://doi.org/10.1109/27.640681

    Article  Google Scholar 

  • Schuelke T, Witke T, Scheibe HJ, Siemroth P, Schultrich B, Zimmer O, Vetter J (1999) Comparison of DC and AC arc thin film deposition techniques. Surf Coat Technol 120–121:226–232

    Article  Google Scholar 

  • Schultrich B, Scheibe HJ, Grandremy G, Drescher D, Schneider D (1996) Elastic modulus as a measure of the diamond likeness and hardness of amorphous carbon films. Diam Relat Mater 5:914–918

    Article  Google Scholar 

  • Schulz H (2005) Amorphe Kohlenstoffschichten hergestellt mittels Laser-Arc Verfahren unter besonderer Berücksichtigung der Oberflächentopographie zur Herstellung superhydrophober Oberflächen. PhD Thesis, TU Dresden, Fakultät Maschinenwesen

    Google Scholar 

  • Shan Q, Jawad SM, and Dewhurst RJ (1993) An automatic stabilization system for a confocal Fabry-Perot interferometer used in the detection of laser-generated ultrasound. Ultrasonics 31:105–115

    Article  Google Scholar 

  • Silva SR, Xu S, Tay BK, Tan HS, Scheibe HJ, Chhowalla M, Milne WI (1996) The structure of tetrahedral amorphous carbon thin films. Thin Solid Films 290:317–322

    Article  Google Scholar 

  • Singer F, Kufner M (2017) Model based laser-ultrasound determination of hardness gradients of gascarburized steel. NDT&E Int 88:24–32

    Article  Google Scholar 

  • Szabo TL, Slobodnik AL (1973) The effect of diffraction on the design of acoustic surface wave devices. IEEE Trans Sonics Ultrason 20:240–251

    Article  Google Scholar 

  • Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21:89–93. https://doi.org/10.1063/1.1699629

    Article  MathSciNet  MATH  Google Scholar 

  • White RM (1963) Generation of elastic waves by transient surface heating. J Appl Phys 34:3559–3567. https://doi.org/10.1063/1.1729258

    Article  Google Scholar 

  • White RM (1970) Surface elastic waves. Proc IEEE 58:1238–1276

    Article  Google Scholar 

  • Whitman RL, Korpel A (1969) Probing of acoustic surface perturbations by coherent light. Appl Opt 8:1567–1576

    Article  Google Scholar 

  • Wienss A, Persch-Schuy G, Vogelgesang M, Hartmann U (1999) Scratching resistance of diamond-like carbon coatings in the subnanometer regime. Appl Phys Lett 75:1077:1079

    Article  Google Scholar 

  • Willems H (1991) Nondestructive determination of hardening depth in induction hardened components by ultrasonic backscattering. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative non-destructive evaluation, vol 10B. Plenum Press, New York, pp 1707–1713

    Chapter  Google Scholar 

  • Xiao X, You X (2006) Numerical study on surface acoustic wave method for determining Young’s modulus of low-k films involved in multi-layered structures. Appl Surf Sci 253:2958–2963

    Article  Google Scholar 

  • Xiao X, Qi H, Tao Y, Kikkawal T (2016) Study on the interfacial adhesion property of low-k thin film by the surface acoustic waves with cohesive zone model. Appl Surf Sci 388:448–454

    Article  Google Scholar 

  • Zinin P, Lefeuvre O, Briggs GAD, Zeller D, Cawley P, Kinloch AJ (1997) Anomalous behaviour of leaky surface waves for stiffening layer near cutoff. J Appl Phys 82:1031–1035

    Article  Google Scholar 

  • Zinin P, Manghnani MH, Zhang X, Feldermann H, Ronning C, Hofsäss H (2002) Surface Brillouin scattering of cubic boron nitride films. J Appl Phys 91:4196–4204

    Article  Google Scholar 

Reprinted from the Following Publications with Permission from Elsevier

  • Leonhardt M, Schneider D, Kaspar J, Schenk S (2004) Characterizing the porosity in thin titanium films by laser-acoustics. Surf Coat Technol 185:292–302. Elsevier Reuse License Number 4186960496489

    Article  Google Scholar 

  • Paehler D, Schneider D, Herben M (2007) Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics. Microelectron Eng 84:340–354. https://doi.org/10.1016/j.mee.2006.11.001. Elsevier Reuse License Number 4187020428836

    Article  Google Scholar 

  • Schneider D, Schwarz T (1997) A photoacoustic method for characterizing thin films. Surf Coat Technol 91:136–146. Elsevier Reuse License Number 4160710855584

    Article  Google Scholar 

  • Schneider D, Schwarz T, Scheibe HJ, Panzner M (1997) Non-destructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves. Thin Solid Films 295:107–116. Elsevier Reuse License Number 4164621126820

    Article  Google Scholar 

  • Schneider D, Schultrich B, Scheibe HJ, Ziegele H, Griepentrog M (1998) A laser-acoustic method for testing and classifying hard surface layers. Thin Solid Films 332:157–163. Elsevier Reuse License Number 4187021304650

    Article  Google Scholar 

  • Schneider D, Siemroth P, Schuelke T, Berthold J, Schultrich B, Schneider HH, Ohr R, Petereit B, Hillgers H (2002) Quality control of ultra-thin and super-hard coatings by laser-acoustics. Surf Coat Technol 153:252–260. https://doi.org/10.1016/S0257-8972(01)01664-4. Elsevier Reuse License Number 4186911186263

    Article  Google Scholar 

  • Schneider D, Frühauf S, Schulz SE, Gessner T (2005) The current limits of the laser-acoustic test method to characterize low-k films. Microelectron Eng 82:393–398. https://doi.org/10.1016/j.mee.2005.07.073. Elsevier Reuse License Number 4186910426737

    Article  Google Scholar 

  • Schneider D, Hofmann R, Schwarz T, Grosser T, Hensel E (2012b) Evaluating surface hardened steels by laser-acoustics. Surf Coat Technol 206:2079–2088. https://doi.org/10.1016/j.surfcoat.2011.09.017. Elsevier Reuse License Number 4187020878545

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Schneider .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schneider, D. (2019). Laser-Induced Surface Acoustic Waves for Material Testing. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_38

Download citation

Publish with us

Policies and ethics