Skip to main content

Nonlinear Acoustics

  • Reference work entry
  • First Online:
Book cover Handbook of Advanced Nondestructive Evaluation
  • 3364 Accesses

Abstract

Early detection and continuous tracking of material micro-damages have been one of the most demanding techniques in industries. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damages. In this chapter, we breifly introduce the earlier efforts and recent development of the nonlinear acoustics and their applications for nondestructive testing and evaluation (NDT& E). Some advanced techniques based on measure of nonlinear acoustics for NDT& E are also introduced as potential and attractive means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bentahar M, El Agra H, El Guerjouma R, Griffa M, Scalerandi M (2006) Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys Rev B 73(1):014116

    Article  Google Scholar 

  • Bermes C, Kim JY, Qu J, Jacobs LJ (2007) Experimental characterization of material nonlinearity using Lamb waves. Appl Phys Lett 90(2):1–4

    Article  Google Scholar 

  • Campos-Pozuelo C, Vanhille C, Gallego-Juárez JA (2006) Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys. IEEE Trans Ultrason Ferroelectr Freq Control 53(1):175–184

    Article  Google Scholar 

  • Cantrell JH, Yost WT (2001) Nonlinear ultrasonic characterization of fatigue microstructures. Int J Fatigue 23:S487–S490

    Article  Google Scholar 

  • Chomas J, Dayton P, May D, Ferrara K (2002) Nondestructive subharmonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 49(7):883–893

    Article  Google Scholar 

  • Croxford AJ, Wilcox PD, Drinkwater BW, Nagy PB (2009) The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J Acoust Soc Am 126:117–122

    Article  Google Scholar 

  • de Lima WJN, Hamilton MF (2003) Finite-amplitude waves in isotropic elastic plates. J Sound Vib 265(4):819–839

    Article  Google Scholar 

  • Demcenko A, Akkerman R, Nagy PB (2012) Non-collinear wave mixing for nonlinear ultrasonic detection of physical ageing in PVC. NDT&E Int 49(1):34–39

    Article  Google Scholar 

  • Deng M (1999) Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J Appl Phys 85(6):3051–3058

    Article  Google Scholar 

  • Deng M, Pei J (2007) Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl Phys Lett 90:121902

    Article  Google Scholar 

  • Donskoy DM, Sutin AM (1998) Vibro-acoustic modulation nondestructive evaluation technique. J Intell Mater Syst Struct 9:765–771

    Article  Google Scholar 

  • Donskoy D, Sutin A, Ekimov A (2001) Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT & E Int 34(4):231–238

    Article  Google Scholar 

  • Eiras JN, Kundu T, Popovics J, Monzo J, Paya J (2014) Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J Acoust Soc Am – Express Lett 135:EL82–EL87

    Article  Google Scholar 

  • Favrie N, Lombard B, Payan C (2015) Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations. Wave Motion 56:221–238

    Article  MathSciNet  Google Scholar 

  • Goldberg ZA (1956) On the propagation of plane waves of finite amplitude. Sov Phys (Acoustics) 2:346–352

    Google Scholar 

  • Guyer RA, Johnson PA (1999) Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys Today 52(4):30–36

    Article  Google Scholar 

  • Guyer RA, McCall KR, Boitnott GN (1995) Hysteresis, discrete memory, and nonlinear wave propagation in rock. Phys Rev Lett 74:3491–3494

    Article  Google Scholar 

  • Guyer RA, McCall KR, Van Den Abeele K (1998) Slow elastic dynamics in a resonant bar of rock. Geophys Res Lett 25:1585–1588

    Article  Google Scholar 

  • Hamilton MF, Blackstock DT (1998) Nonlinear acoustics. Academic, London

    Google Scholar 

  • Herrmann J, Kim J, Jacobs LJ, Qu J, Littles JW, Savage M (2006a) Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J Appl Phys 99:124913

    Article  Google Scholar 

  • Herrmann J, Kim J, Jacobs LJ, Qu J, Littles JW (2006b) Assessment of material damage in a nickel-based superalloy using nonlinear Rayleigh surface wave. J Appl Phys 99(12):1497–1488

    Article  Google Scholar 

  • Hess P, Lomonosov AM, Mayer AP (2014) Laser based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54:39–55

    Article  Google Scholar 

  • Hikata A, Elbaum C (1966) Generation of ultrasonic second and third harmonics due to dislocations. Phys Rev 144:469–477

    Article  Google Scholar 

  • Hilloulin B, Abraham O, Loukili A, Durand O, Tournat V (2014) Small crack detection in cementitious materials using nonlinear coda wave modulation. NDT & E Int 68:98–104

    Article  Google Scholar 

  • Hurley DC, Fortunko CM (1997) Determination of the nonlinear ultrasonic parameter using a Michelson interferometer. Meas Sci Technol 8:634–642

    Article  Google Scholar 

  • Jhang KY (2000) Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans Ultrason Ferroelectr Freq Control 47:540–548

    Article  Google Scholar 

  • Jhang KY, Kim KC (1999) Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37:39–44

    Article  Google Scholar 

  • Jia X, de Billy M (1992) Observation of the dispersion behavior of surface acoustic waves in a wedge waveguide by laser ultrasonics. Appl Phys Lett 61:2970–2972

    Article  Google Scholar 

  • Johnson PA, Rasolofosaon PNJ (1996) Resonance and elastic nonlinear phenomena in rock. J Geophys Res 101(B5):553–564

    Article  Google Scholar 

  • Johnson PA, Sutin A (2005) Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J Acoust Soc Am 117:124–130

    Article  Google Scholar 

  • Kim J-Y, Baltazar A, Hu JW, Rokhlin SI (2006a) Hysteretic linear and nonlinear acoustic responses from pressed interfaces. Int J Solids Struct 43(21):6436–6452

    Article  Google Scholar 

  • Kim JY, Qu J, Jacobs LJ, Littles JW, Savage MF (2006b) Acoustic nonlinearity parameter due to microplasticity. J Nondestruct Eval 25:28–36

    Article  Google Scholar 

  • Klepa A, Staszewski WJ, Jenal RB, Szwedo M, Iwaniec J (2012) Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations. Struct Health Monit 11:197–211

    Article  Google Scholar 

  • Kober J, Prevorovsky Z (2014) Theoretical investigation of nonlinear ultrasonic wave modulation spectroscopy at crack interface. NDT & E Int 61:10–15

    Article  Google Scholar 

  • Kuvshinov B, Smit T, Campman XH (2013) Nonlinear interaction of elastic waves in rocks. Geophys J Int 194:1920–1940

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1970) Theory of elasticity. Oxford: Oxford University Press

    Google Scholar 

  • Li W, Cho Y (2014) Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves. Exp Mech 54(8):1309–1318

    Article  Google Scholar 

  • Li W, Cho Y (2016) Combination of nonlinear ultrasonics and guided wave tomography for imaging the micro-defects. Ultrasonics 65:87–95

    Article  Google Scholar 

  • Li W, Cho Y, Achenbach JD (2012a) Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater Struct 21(8):085019

    Article  Google Scholar 

  • Li W, Cho Y, Hyun S (2012b) Characteristics of ultrasonic nonlinearity by thermal fatigue. Int J Precis Eng Manuf 13(6):935–940

    Article  Google Scholar 

  • Li W, Cho Y, Achenbach JD (2013) Assessment of heat treated Inconel X-750 alloy by nonlinear ultrasonics. Exp Mech 53(5):775–781

    Article  Google Scholar 

  • Li W, Deng M, Xiang Y (2017) Review on the second harmonic generation of ultrasonic guided waves in solid media (I): theoretical analyses. Chin Phys B 26:114302

    Article  Google Scholar 

  • Liu Y, Khajeh E, Lissenden CJ, Rose JL (2013) Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders. J Acoust Soc Am 133:2541–2553

    Article  Google Scholar 

  • Liu P, Sohn H, Kundu T, Yang S (2014) Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS). NDT & E Int 66:106–116

    Article  Google Scholar 

  • Matlack KH, Kim J, Jacobs LJ, Qu J (2015) Review of second harmonic generation measurement techniques for material sate determination in metals. J Nondestruct Eval 34:273

    Article  Google Scholar 

  • Moreau A (1995) Detection of acoustic second harmonics in solids using a heterodyne laser interferometer. J Acoust Soc Am 98:2745

    Article  Google Scholar 

  • Muller M, Sutin A, Guyer R, Talmant M, Laugier P, Johnson P (2005) Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J Acoust Soc Am 118(6):3946–3952

    Article  Google Scholar 

  • Nagy PB (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5):375–381

    Article  Google Scholar 

  • Nazarov VE, Radostin AV (2015) Nonlinear acoustic waves in micro-inhomogeneous solids. London: Wiley

    Google Scholar 

  • Nazarov VE, Radostin AV, Ostrovsky LA, Soustova IA (2003) Wave processes in media with hysteretic nonlinearity: part 2. Acoust Phys 49(4):444–448

    Article  Google Scholar 

  • Ohara Y, Mihara T, Sasaki R, Ogata T, Yamamoto S, Kishimoto Y, Yamanaka K (2007) Imaging of closed crack using nonlinear response of elastic waves at subharmonic frequency. Appl Phys Lett 90:011902

    Article  Google Scholar 

  • Ohara Y, Endo H, Mihara T, Yamanaka K (2009) Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn J Appl Phys 48:07GD01

    Google Scholar 

  • Padmore TC, Stegeman GI (1976) Surface-wave nonlinearities: nonlinear bulk wave generation by two oppositely directed collinear surface waves. J Appl Phys 47(4):1209–1228

    Article  Google Scholar 

  • Pecorari C, Mendelsohn DA (2014) Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions of hysteretic damage. J Nondestruct Eval 33(2):239–251

    Article  Google Scholar 

  • Pruell C, Kim JY, Qu J, Jacobs L (2007) Evaluation of plasticity driven material damage using Lamb waves. Appl Phys Lett 91:231911

    Article  Google Scholar 

  • Qu J, Jacobs LJ, Nagy PB (2011) On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L). J Acoust Soc Am 129(6):3449–3452

    Article  Google Scholar 

  • Read TA (1940) The internal friction of single metal crystals. Phys Rev 58:371–380

    Article  Google Scholar 

  • Rischbieter F (1967) Measurement of the nonlinear sound response of aluminum with the aid of Rayleigh waves. Acta Acoust United Acust 18(2):109–112

    Google Scholar 

  • Rushchitsky JJ (2014) Nonlinear elastic waves in materials. London: Springer

    Google Scholar 

  • Scruby CB, Drain LE (1990) Laser ultrasonics: techniques and applications. Adam Hilger, Bristol

    Google Scholar 

  • Solodov IY (1998) Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36:383–390

    Article  Google Scholar 

  • Solodov IY, Korshak BA (2002) Instability, chaos, and “memory” in acoustic-wave-crack interaction. Phys Rev Lett 88:014303

    Article  Google Scholar 

  • Srivastava AF, di Scalea L (2009) On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J Sound Vib 323:932–943

    Article  Google Scholar 

  • Stratoudaki T, Ellwood R, Sharples S, Clark M, Somekh MG (2011) Measurement of materials nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J Acoust Soc Am 129:1721

    Article  Google Scholar 

  • Sugawara A, Jinno K, Ohara Y, Yamanaka K (2015) Closed-crack imaging and scattering behavior analysis using confocal subharmonic phased array. Jpn J Appl Phys 54:07HC08

    Article  Google Scholar 

  • Ten Cate JA, Shankl TJ (1996) Slow dynamics in the nonlinear elastic response of Berea sandstone. Geophys Res Lett 23:3019–3022

    Article  Google Scholar 

  • Van Den Abeele KE-A, Johnson PA, Sutin A (2000a) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res Nondestruct Eval 12:17–30

    Article  Google Scholar 

  • Van Den Abeele KE, Carmeliet J, Ten Cate JA, Johnson PA (2000b) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res Nondestruct Eval 12:31–42

    Article  Google Scholar 

  • Zarembo LK, Krasil’nikox VA, Shkol’nik IE (1989) Nonlinear acoustics in a problem of diagnosing the strength of solids. Probl Prochnosti 11:86–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younho Cho .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cho, Y., Li, W. (2019). Nonlinear Acoustics. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_36

Download citation

Publish with us

Policies and ethics