Skip to main content

Thermal Wave Techniques

  • Reference work entry
  • First Online:
Handbook of Advanced Nondestructive Evaluation

Abstract

Thermal wave techniques can be used to excite thermal gradients within the volume to be evaluated and, hence, to achieve information on the interior of the sample under test.

The opportunities of thermal waves will be considered for the particular case of embedded piezoelectrics and the evaluation of their polarization state in construction elements, e.g., adaptronic structures. The described methods for this application are based on the pyroelectric effect whereas thermal excitation is induced by laser irradiation. Fundamentals of the pyroelectric effect are given and the resulting thermal problems are analyzed. Thermal methods recording the pyroelectric response both in the frequency (laser intensity modulation method including two- and three-dimensional polarization mapping) and in the time domains (thermal pulse method including thermal pulse tomography, thermal step method, thermal square wave method) are examined. Emphasis is given to the nonuniform resolution of thermal methods providing higher resolution in the near-surface region. Experimental pitfalls are highlighted. Nondestructive evaluation of piezoelectric transducers is illustrated by examples of lead zirconate titanate (PZT) plates embedded into low-temperature co-fired ceramics (LTCC), epoxy resins, thermoplastics, and die-casted aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adby PR (1980) Applied circuit theory: matrix and computer methods. Ellis Horwood series in electrical and electronic engineering. Ellis Horwood Ltd, London

    Google Scholar 

  • Agnel S, Toureille A, Le Gressus C (1996) Study of the aging of impregnated paper of high power capacitors using the thermal step method and the thermally stimulated currents. Proceedings of conference on electrical insulation and dielectric phenomena – CEIDP ’96. https://doi.org/10.1109/CEIDP.1996.564656

  • Ahmed NH, Srinivas NN (1997) Review of space charge measurements in dielectrics. IEEE Trans Dielectr Electr Insul 4:644–656

    Article  Google Scholar 

  • Amjadi H (1996) Thermal-pulse investigation of thermally grown silicon dioxide electrets. In: 9th international symposium on electrets (ISE 9). https://doi.org/10.1109/ISE.1996.578079

  • Angström AJ (1863) XVII. New method of determining the thermal conductibility of bodies. Philos Mag Ser 4 25(166):130–142

    Article  Google Scholar 

  • Aryal S, Mellinger A (2013) Resolution-enhanced polarization imaging with focused thermal pulses. J Appl Phys 114:154109

    Article  Google Scholar 

  • Bauer S (1993) Method for the analysis of thermal-pulse data. Phys Rev B 47:11049–11055

    Article  Google Scholar 

  • Bauer S, Bauer-Gogonea S (2003) Current practice in space charge and polarization profile measurements using thermal techniques. IEEE Trans Dielectr Electr Insul 10:883–902

    Article  Google Scholar 

  • Bauer S, Ploss B (1988) Analysis of the spatial distribution of polarization in PVDF-foils from the frequency spectra of the pyroelectric current. In: Proceedings of 6th international symposium on electrets (ISE 6). https://doi.org/10.1109/ISE.1988.38519

  • Bauer S, Ploss B (1990) A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin films and their applications for integrated heat sensors. J Appl Phys 68:6361–6367

    Article  Google Scholar 

  • Baumann T, Dacol F, Melcher RL (1983) Transmission thermal-wave microscopy with pyroelectric detection. Appl Phys Lett 43:71–73

    Article  Google Scholar 

  • Bezdetny NM, Zeinally AK, Khutorsky VE (1984) Investigation of the polarization distribution in ferroelectics by a dynamic pyro-effect method [in Russian]. Izv AN SSSR Ser Fiz 48:200–203

    Google Scholar 

  • Biot MA (1970) Variational principles in heat transfer. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Blevin WR, Geist J (1974) Influence of black coatings on pyroelectric detectors. Appl Opt 13:1171–1178

    Article  Google Scholar 

  • Bloß P, DeReggi AS, Schäfer H (2000) Electric-field profile and thermal properties in substrate-supported dielectric films. Phys Rev B 62:8517–8530

    Article  Google Scholar 

  • Bosworth RCL (1946) Thermal inductance. Nature 158:309

    Article  Google Scholar 

  • Braccini M, Dupeux M (2012) Mechanics of solid interfaces. Wiley, Hoboken, chapter 8.3.1

    Book  Google Scholar 

  • Burfoot JC, Latham RV (1963) A new method for studying movements of electric domain walls. Br J Appl Phys 14:933–934

    Article  Google Scholar 

  • Cady WG (1964) Piezoelectricity, vol 2. Dover, New York, pp 699–711

    Google Scholar 

  • Camia FM (1967) Traité de thermocinétique impulsionelle. Dunod, Paris

    Google Scholar 

  • Carslaw HJ, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, New York

    MATH  Google Scholar 

  • Chen J, Zhang W, Feng Z, Cai W (2014) Determination of thermal contact conductance between thin metal sheets of battery tabs. Int J Heat Mass Transf 69:473–480

    Article  Google Scholar 

  • Chynoweth AG (1956) Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J Appl Phys 27:78–84

    Article  Google Scholar 

  • Clay W, Evans BJ, Latham RV (1974) A nondestructive pyroelectric display of an antiparallel polarization distribution in single-crystal barium titanate. J Phys D Appl Phys 7:1291–1295

    Article  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  Google Scholar 

  • Collins RE (1977) Measurement of charge distribution in electrets. Rev Sci Instrum 48:83–91

    Article  Google Scholar 

  • Cook WR, Berlincourt DA, Scholz FJ (1963) Thermal expansion and pyroelectricity in lead titanate zirconate and barium titanate. J Appl Phys 34:1392–1398

    Article  Google Scholar 

  • Coufal H, Grygier RK (1989) Charge profiles of thin electret films mapped with subnanosecond thermal pulses. J Opt Soc Am B6:2013–2017

    Article  Google Scholar 

  • Coufal HJ, Grygier RK, Horne DE, Fromm JE (1987) Pyroelectric calorimeter for photothermal studies of thin films and adsorbates. J Vac Sci Technol A 5:2875–2889

    Article  Google Scholar 

  • D’Azzo JJ, Houpis CH (1999) Nyquist, Bode and Nickols plots. In: Levine WS (ed) Control system fundamentals. CRC Press, Boca Raton, chapter 10.3

    Google Scholar 

  • Dagher G, Holé S, Lewiner J (2006) A preliminary study of space charge distribution measurements at nanometer spatial resolution. IEEE Trans Dielectr Electr Insul 13:1036–1041

    Article  Google Scholar 

  • Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys 19:1484–1490

    Article  Google Scholar 

  • Devonshire AF (1954) Theory of ferroelectrics. Adv Phys 3:85–130

    Article  MATH  Google Scholar 

  • Eydam E, Suchaneck G, Esslinger S, Schönecker A, Neumeister P, Gerlach G (2014) Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods. AIP Conf Proc 1627:31–36

    Article  Google Scholar 

  • Eydam A, Suchaneck G, Schwankl M, Gerlach G, Singer RF, Körner C (2015) Evaluation of polarisation state of light metal embedded piezoelectrics. Adv Appl Ceram 114:226–230

    Article  Google Scholar 

  • Eydam A, Suchaneck G, Gerlach G (2016a) Characterisation of the polarisation state of embedded piezoelectric transducers by thermal waves and thermal pulses. J Sensor Sensor Syst 5:165–170

    Article  Google Scholar 

  • Eydam A, Suchaneck G, Gerlach G (2016b) Non-destructive evaluation of integrated piezoelectric transducers by thermal waves and thermal pulses. Procedia Technol 26:59–65

    Article  Google Scholar 

  • Eydam A, Suchaneck G, Gerlach G (2016c) Thermal-pulse method for life monitoring of integrated piezoelectric transducers. Procedia Eng 168:848–851

    Article  Google Scholar 

  • Flössel M, Gebhardt S, Schönecker A, Michaelis A (2010) Development of a novel sensor-actuator-module with ceramic multilayer technology. J Ceram Sci Technol 1:55–58

    Google Scholar 

  • Gaudenzi P (2009) Smart structures: physical behaviour, mathematical modelling and applications. Wiley, Chichester

    Book  Google Scholar 

  • Gerlach G, Shvedov D, Norkus V (2004) Packaging influence on acceleration sensitivity of pyroelectric infrared detectors. In: Proceedings of sixth IEEE CPMT conference on high density microsystem design and packaging and component failure analysis, HDP’04. https://doi.org/10.1109/HPD.2004.1346715

  • Gerlach G, Suchaneck G, Movchikova A, Malyshkina OA (2007) Nondestructive testing of ferroelectrics by thermal wave methods. Proc SPIE 6530:65300B. https://doi.org/10.1117/12.715534

    Article  Google Scholar 

  • Glass AM (1968) Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3. Phys Rev 172:564–571

    Article  Google Scholar 

  • Göber H, Erk S, Grigull U (1955) Die Grundgesetze der Wärmeübertragung. Springer, Berlin, p 82

    Book  Google Scholar 

  • Groetsch CW (2007) Integral equations of the first kind, inverse problems and regularization: a crash course. J Phys Conf Ser 73:012001

    Article  Google Scholar 

  • Hadni A, Thomas R (1972) Laser study of reversible nucleation sites in triglycine sulphate and applications to pyroelectric detectors. Ferroelectrics 4:39–49

    Article  Google Scholar 

  • Hadni A, Henninger Y, Thomas R, Vergnat P, Bruno Wyncke B (1965) Sur les propriétés pyroélectriques de quelques matériaux et leur application à la détection de l’infrarouge. J Phys France 26:345–360

    Article  Google Scholar 

  • Hadni A, Thomas R, Perrin J (1969) Response of a triglycine sulphate pyroelectric detector to high frequencies (300 kHz). J Appl Phys 40:2740–2745

    Article  Google Scholar 

  • Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  Google Scholar 

  • Holé S (2008) Resolution of direct space charge distribution measurement methods. IEEE Trans Dielectr Electr Insul 15:861–871

    Article  Google Scholar 

  • Hufenbach W, Gude M, Modler N, Heber T, Winkler A, Weber T (2013) Process chain modelling and analysis for the high-volume production of thermoplastic composites with embedded piezoceramic modules. Smart Mater Res 2013:201631

    Google Scholar 

  • Imburgia I, Romano P, Caruso M, Viola F, Miceli R, Riva Sanseverino E, Madonia A, Schettino G (2016) Contributed review: review of thermal methods for space charge measurement. Rev Sci Instrum 87:111501

    Article  Google Scholar 

  • Kepler RG, Anderson RA (1978) Piezoelectricity and pyroelectricity in polyvinylidene fluoride. J Appl Phys 49:4490–4494

    Article  Google Scholar 

  • Kremer F, Schoenhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin, pp 62–72

    Google Scholar 

  • Landau LD, Lifshitz EM (1969) Mechanics (Volume 1 of a course of theoretical physics). Pergamon Press, Oxford, p 59

    Google Scholar 

  • Lang SB (1990) New theoretical analysis for the laser intensity modulation method (LIMM). Ferroelectrics 106:269–274

    Article  Google Scholar 

  • Lang SB (1991) Laser intensity modulation method (LIMM): experimental techniques, theory and solution of the integral equation. Ferroelectrics 118:343–361

    Article  Google Scholar 

  • Lang SB (1998) An analysis of the integral equation of the surface laser intensity modulation method using the constrained regularization method. IEEE Trans Dielectr Electr Insul 5:70–76

    Article  Google Scholar 

  • Lang SB (2004) Laser intensity modulation method (LIMM): review of the fundamentals and a new method for data analysis. IEEE Trans Dielectr Electr Insul 11:3–12

    Article  Google Scholar 

  • Lang SB (2006) Fredholm integral equation of the laser intensity modulation method (LIMM): solution with the polynomial regularization and L-curve methods. J Mater Sci 41:147–153

    Article  Google Scholar 

  • Lang SB, Das-Gupta DK (1986) Laser-intensity-modulation method: a technique for determination of spatial distributions of polarization and space charge in polymer electrets. J Appl Phys 59:2151–2160

    Article  Google Scholar 

  • Lang SB, Fleming R (2009) A comparison of three techniques for solving the Fredholm integral equation of the laser intensity modulation method (LIMM). IEEE Trans Dielectr Electr Insul 16:809–814

    Article  Google Scholar 

  • Lang SB, Rosenman G, Rushin S, Kugel V, Nir D (1992) Electron emission and spontaneous polarization distribution of proton-exchanged LiNbO3. Ferroelectrics 133:253–258

    Article  Google Scholar 

  • Leal Ferreira GF (1989) On the deconvolution of heat-pulse like signals. J Appl Phys 66:4924–4927

    Article  Google Scholar 

  • Lines ME, Glass AM (1977) Principles and application of ferroelectrics and related materials. Clarendon Press, Oxford, chapter 5.2

    Google Scholar 

  • Liu ST, Zook JD (1974) Evaluation of Curie constants of ferroelectric crystals from pyroelectric response. Ferroelectrics 7:171–173

    Article  Google Scholar 

  • Liu S, Grinberg I, Rappe AM (2013) Exploration of the intrinsic inertial response of ferroelectric domain walls via molecular dynamics simulations. Appl Phys Lett 103:232907

    Article  Google Scholar 

  • Mah JW, Shanmugan S, Mutharasu D (2017) Impact of temperature, pressure, and current on thermal resistance of thermal interface material in optoelectronics device. J Optoelectron Biomed Mater 9:79–84

    Google Scholar 

  • Malyshkina OV, Movchikova AA, Suchaneck G (2007) New method for the determination of the pyroelectric current spatial distribution in ferroelectric materials [in Russian]. Phys Solid State 49:2144–2147 [Fiz Tverd Tela 49:2045–2048]

    Article  Google Scholar 

  • Malyshkina OV, Movchikova AA, Grechishkin RM, Kalugina ON (2010) Use of the thermal square-wave method to analyze polarization state in ferroelectric materials. Ferroelectrics 400:63–75

    Article  Google Scholar 

  • Mandelis A, Zver MM (1985) Theory of photopyroelectric spectroscopy of solids. J Appl Phys 57:4421–4430

    Article  Google Scholar 

  • Mandelis A, Nicolaides L, Yan C (2001) Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields. Phys Rev Lett 87:020801

    Article  Google Scholar 

  • Mellinger A (2004) Unbiased iterative reconstruction of polarization and space charge profiles from thermal-wave experiments. Meas Sci Technol 15:1347–1353

    Article  Google Scholar 

  • Mellinger A, Singh R, Gerhard-Multhaupt R (2005a) Fast thermal-pulse measurements of space-charge distributions in electret polymers. Rev Sci Instrum 76:013903

    Article  Google Scholar 

  • Mellinger A, Singh R, Wegener M, Wirges W, Gerhard-Multhaupt R, Lang SB (2005b) Three-dimensional mapping of polarization profiles with thermal pulses. Appl Phys Lett 86:082903

    Article  Google Scholar 

  • Mellinger A, Flores-Suárez R, Wegener M, Wirges W, Gerhard-Multhaupt R, Singh R (2006) Thermal-pulse tomography of polarization distributions in a cylindrical geometry. IEEE Trans Dielectr Electr Insul 13:1030–1035

    Article  Google Scholar 

  • Mopsik FI, DeReggi AS (1982) Numerical evaluation on the dielectric polarization distribution from thermal pulse data. J Appl Phys 53:4333–4339

    Article  Google Scholar 

  • Movchikova A, Malyshkina OV, Pedko BB, Suchaneck G, Gerlach G (2008a) Polarization profiling of ferroelectrics by thermal square wave methods. Ferroelectrics 367:38–44

    Article  Google Scholar 

  • Movchikova A, Malyshkina O, Suchaneck G, Gerlach G, Steinhausen R, Langhammer HT, Pientschke C, Beige H (2008b) Study of the pyroelectric behavior of BaTi1-xSnxO3 piezo-ceramics. J Electroceram 20:43–46

    Article  Google Scholar 

  • Movchikova A, Malyshkina OV, Pedko BB, Suchaneck G, Gerlach G (2009) The influence of doping on the pyroelectric response of SBN single crystals. Ferroelectrics 378:186–194

    Article  Google Scholar 

  • Movchikova A, Suchaneck G, Malyshkina OV, Pedko BB, Gerlach G (2010) Thermal wave study of piezoelectric coefficient distribution in PMN-PT single crystals. Adv Appl Ceram 109:131–134

    Article  Google Scholar 

  • Neugschwandtner GS, Schwödiauer R, Bauer-Gogonea S, Bauer S (2001) Piezo- and pyroelectricity of a polymer-foam space-charge electret. J Appl Phys 89:4503–4511

    Article  Google Scholar 

  • Notingher P, Agnel S, Fruchier O, Toureille A, Rousset B, Sanchez JL (2004) On the use of the thermal step method as a tool for characterizing thin layers and structures for micro and nano-electronics. J Optoelectron Adv Mater 6:1089–1906

    Google Scholar 

  • Notingher P, Holé S, Baudon S, Fuchier O, Boyer L, Agnel S (2012) Toward non-destructive high resolution thermal methods for electric charge measurements in solid dielectrics and components. In: ESA2012- electrostatics joint conference, Cambridge, June 2012. Online publication. http://www.electrostatics.org/images/ESA2012_M3.pdf. Accessed 24 Nov 2017

  • Nye JF (1995) Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford, chapter 10.4.4

    MATH  Google Scholar 

  • Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  Google Scholar 

  • Perrin B, Bonello B, Jeannet J-C, Romatet E (1996) Interferometric detection of hypersound waves in modulated structures. Prog Nat Sci 6:444–448

    Google Scholar 

  • Perry CH, Khan BN, Rupprecht G (1964) Infrared studies of perovskite titanates. Phys Rev 135:A408–A412

    Article  Google Scholar 

  • Peterson RL, Day GW, Gruzensky PM, Phelan RJ (1974) Analysis of response of pyroelectric optical detector. J Appl Phys 45:3296–3303

    Article  Google Scholar 

  • Petre A, Marty-Dessus D, Berquez L, Franceschi JL (2006) Space charge cartography by FLIMM on SEM-irradiated PTFE thin films. J Electrost 64:492–497

    Article  Google Scholar 

  • Petzelt J, Nuzhnyy D, Bovtun V, Kempa M, Savinov M, Kamba S, Hlinka J (2015) Lattice dynamics and dielectric spectroscopy of BZT and NBT lead-free perovskite relaxors – comparison with lead-based relaxors. Phase Transit 88:320–332

    Article  Google Scholar 

  • PI Ceramic GmbH (2017) Piezoelectric ceramic products: fundamentals, characteristics and applications. https://www.piceramic.com/en/products/piezoceramic-materials/#c15193. Accessed 24 Nov 2017

  • Ploss B, Bianzano O (1994) Polarization profiling of the surface region of PVDF and P(VDF-TrFE).In: IEEE 8th international symposium on electrets. https://doi.org/10.1109/ISE.1994.514769

  • Ploss B, Emmerich R, Bauer S (1992) Thermal wave probing of pyroelectric distributions in the surface region of ferroelectric materials: a new method of analysis. J Appl Phys 72:5363–5370

    Article  Google Scholar 

  • Prudnikov AP, Brychkov YA, Marichev OI (1992) Integrals and series, vol. 1: Elementary functions. Taylor & Francis, London, p 730

    Google Scholar 

  • Putley EH (1970) The pyroelectric detector. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 5. Academic, New York, pp 259–285

    Google Scholar 

  • Qiu X, Hollander L, Flores Suarez R, Wirges W, Gerhard R (2010) Polarization from dielectric-barrier discharges in ferroelectrets: mapping of the electric-field profiles by means of thermal-pulse tomography. Appl Phys Lett 97:072905

    Article  Google Scholar 

  • Raffmetal (2017) EN 46000 data sheet. www.raffmetal.com/scarica_file.asp?c=/dati/SearchAlloy/ENG/&f=EN46000.pdf. Accessed 24 Nov 2017

  • Reboul JM (2011) Thermal waves interferences for space charge measurements in dielectrics. In: 14th international symposium on electrets (ISE). https://doi.org/10.1109/ISE.2011.6084983

  • Reboul JM, Mady F (2004) Space charge measurements by the alternating thermal wave method: thermal analysis and simulations for data processing improvement. In: Proceedings of the 2004 I.E. international conference on solid dielectrics ICSD. https://doi.org/10.1109/ICSD.2004.1350339

  • Reboul JM, Cherifi A, Carin R (2001) A new method for space charge measurements in dielectric films for power capacitors. IEEE Trans Dielectr Electr Insul 8:753–759

    Article  Google Scholar 

  • Rose A (1973) Vision – human and electronic. Plenum Press, New York

    Google Scholar 

  • Rübner M, Körner C, Singer RF (2008) Integration of piezoceramic modules into die castings – procedure and functionalities. Adv Sci Technol 56:170–175

    Article  Google Scholar 

  • Sakai S, Date M, Furukawa T (2002) Development of polarization distribution in fatigued films of ferroelectric vinylidene fluoride/trifluoroethylene copolymer. Jpn J Appl Phys 41:3822–3828

    Article  Google Scholar 

  • Salazar A (2006) Energy propagation of thermal waves. Eur J Phys 27:1349–1355

    Article  MathSciNet  MATH  Google Scholar 

  • Samoilov VB, Yoon YS (1998) Frequency response of multilayer pyroelectric sensors. IEEE Trans Ultrason Ferroelectr Freq Control 45:1246–1254

    Article  Google Scholar 

  • Sandner T (2003) Verfahren zur tiefenaufgelösten Polarisationsbestimmung von pyroelektrischen PZT-Dünnschichten für IR-Sensoren. w.e.b.-Universitätsverlag, Dresden

    Google Scholar 

  • Sandner T, Suchaneck G, Koehler R, Suchaneck A, Gerlach G (2002) High frequency LIMM – a powerful tool for ferroelectric thin film characterization. Integr Ferroelectr 46:243–257

    Article  Google Scholar 

  • Schein LB, Cressman PJ, Cross LE (1978) Electrostatic measurements of tertiary pyroelectricity in partially clamped LiNbO3. Ferroelectrics 22:945–948

    Article  Google Scholar 

  • Sea Ceramics Technology (2017a) Thermal properties of ceramics and metal/metal composites. http://seaceramics.com/Download/Reference%20Data/Cer-Metal%20thermal%20properties.pdf. Accessed 24 Nov 2017

  • Sea Ceramics Technology (2017b) Table of LTCC materials properties. http://seaceramics.com/Download/Reference%20Data/LTCC%20PROPERTY2.pdf. Accessed 24 Nov 2017

  • Sessler GM (1997) Charge distribution and transport in polymers. IEEE Trans Dielectr Electr Insul 4:614–628

    Article  Google Scholar 

  • Stewart M, Cain M (2008) Spatial characterization of piezoelectric materials using the scanning laser intensity modulation method (LIMM). J Am Ceram Soc 91:2176–2181

    Article  Google Scholar 

  • Suchaneck G, Lin W-M, Koehler R, Sandner T, Gerlach G, Krawietz R, Pompe W, Deineka A, Jastrabik L (2002) Characterization of RF-sputtered self-polarized PZT thin films for IR sensor arrays. Vacuum 66:473–478

    Article  Google Scholar 

  • Suchaneck G, Hu W, Gerlach G, Flössel M, Gebhardt S, Schönecker A (2011) Nondestructive evaluation of polarization in LTCC/PZT piezoelectric modules by thermal wave methods. Ferroelectrics 420:25–29

    Article  Google Scholar 

  • Suchaneck G, Eydam A, Hu W, Kranz B, Drossel W-G, Gerlach G (2012) Evaluation of polarization of embedded piezoelectrics by the thermal wave method. IEEE Trans Ultrason Ferroel Freq Control 59:1950–1954

    Article  Google Scholar 

  • Suchaneck G, Eydam A, Rübner R, Schwankl M, Gerlach G (2013a) A simple thermal wave method for the evaluation of the polarization state of embedded piezoceramics. Ceram Int 39-S1:S587–S590

    Article  Google Scholar 

  • Suchaneck G, Eydam A, Gerlach G (2013b) A laser intensity modulation method for the evaluation of the polarization state of embedded piezoceramics. Ferroelectrics 453:127–132

    Article  Google Scholar 

  • Toureille A, Reboul JP (1988) The thermal-step-technique applied to the study of charge decay in polyethylene thermoelectrets. In: IEEE 6th international symposium on electrets (ISE 6). https://doi.org/10.1109/ISE.1988.38518

  • Tuncer E, Lang SB (2006) Kramers-Kronig relations in laser intensity modulation method. Phys Rev B 74:113109

    Article  Google Scholar 

  • van der Ziel A (1973) Pyroelectric response and D* of thin pyroelectric films on a substrate. J Appl Phys 44:546–549

    Article  Google Scholar 

  • Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Leipzig

    MATH  Google Scholar 

  • von Laue M (1925) Piezoelektrisch erzwungene Schwingungen von Quarzstäben. Z Phys 34:347–361

    Article  MATH  Google Scholar 

  • von Seggern H (1978) Thermal-pulse technique for determining charge distributions: effect of measurement accuracy. Appl Phys Lett 33:134–137

    Article  Google Scholar 

  • von Seggern H, West JE, Kubli RA (1984) Determination of charge centroids in two-side metallized electrets. Rev Sci Instrum 55:964967

    Google Scholar 

  • Wilkie WK, Bryant GR, High JW. Fox RL, Hellbaum RF, Jalink A, Little BD, Mirick PH (2000) Low-cost piezocomposite actuator for structural control applications. In: Proceedings of SPIE 3991, smart structures and materials 2000: industrial and commercial applications of smart structures technologies. https://doi.org/10.1117/12.388175

  • Wu Q, Zhang X-C (1995) Free-space electro-optic sampling of terahertz beams. Appl Phys Lett 67:3523–3525

    Article  Google Scholar 

  • Xu-Sheng W (1993) Tertiary pyroelectric effect on thick ferroelectric crystal plates with partially uniform heating. Ferroelectr Lett Sect 15:159–165

    Article  Google Scholar 

  • Yilmaz S, Bauer S, Wirges W, Gerhard-Multhaupt R (1993) Scanning electro-optical and pyroelectrical microscopy for the investigation of polarization patterns in poled polymers. Appl Phys Lett 63:1724–1726

    Article  Google Scholar 

  • Zajosz J (1979) Pyroelectric response to step radiation signals in thin ferroelectric films on a substrate. Thin Solid Films 62:229–236

    Article  Google Scholar 

  • Zheng F, Zhang Y, An Z, Liu C, Dong J, Lin C (2013) Thermal pulse method with an applied field. In: IEEE international conference on solid dielectrics (ICSD). https://doi.org/10.1109/ICSD.2013.6619841

  • Zook JD, Liu ST (1978) Pyroelectric effect in thin film. J Appl Phys 49:4604–4606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Suchaneck .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Suchaneck, G., Eydam, A., Gerlach, G. (2019). Thermal Wave Techniques. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_15

Download citation

Publish with us

Policies and ethics