Skip to main content

Numerical Tools for Improved Convergence of Meshfree Peridynamic Discretizations

  • Living reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

Peridynamic models have been employed to simulate a broad range of engineering applications concerning material failure and damage, with the majority of these simulations using a meshfree discretization. This chapter reviews that meshfree discretization, related issues present in peridynamic convergence studies, and possible remedies proposed in the literature. In particular, we discuss two numerical tools, partial-volume algorithms and influence functions, to improve the convergence behavior of numerical solutions in peridynamics. Numerical studies in this chapter involve static and dynamic simulations for linear elastic state-based peridynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O. Weckner, Peridynamics for multiscale materials modeling, in SciDAC 2008, 13–17 July, Seattle, Journal of Physics: Conference Series, vol. 125, IOP Publishing, 2008. 012078

    Google Scholar 

  • F. Bobaru, Y.D. Ha, Adaptive refinement and multiscale modeling in 2D peridynamics. Int. J. Multiscale Comput. Eng. 9, 635–659 (2011)

    Article  Google Scholar 

  • F. Bobaru, Y.D. Ha, W. Hu, Damage progression from impact in layered glass modeled with peridynamics. Centr. Eur. J. Eng. 2, 551–561 (2012)

    Google Scholar 

  • F. Bobaru, M. Yang, L.F. Alves, S.A. Silling, E. Askari, J. Xu, Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Meth. Eng. 77, 852–877 (2009)

    Article  Google Scholar 

  • X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237–1250 (2011)

    Article  MathSciNet  Google Scholar 

  • D. De Meo, N. Zhu, E. Oterkus, Peridynamic modeling of granular fracture in polycrystalline materials. J. Eng. Mater. Technol. 138, 041008–041008–16 (2016)

    Article  Google Scholar 

  • Q. Du, X. Tian, Asymptotically compatible schemes for peridynamics based on numerical quadratures, in Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, 2014. Paper No. IMECE2014-39620

    Google Scholar 

  • W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)

    Article  Google Scholar 

  • M. Ghajari, L. Iannucci, P. Curtis, A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)

    Article  MathSciNet  Google Scholar 

  • Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)

    Article  Google Scholar 

  • Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)

    Article  Google Scholar 

  • W. Hu, Y. D. Ha, F. Bobaru, Numerical integration in peridynamics, Technical report, University of Nebraska-Lincoln, Sept. 2010

    Google Scholar 

  • W. Hu, Y.D. Ha, F. Bobaru, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. Comput. Methods Appl. Mech. Eng. 217–220, 247–261 (2012)

    Article  MathSciNet  Google Scholar 

  • B. Kilic, A. Agwai, E. Madenci, Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct. 90, 141–151 (2009)

    Article  Google Scholar 

  • B. Kilic, E. Madenci, Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int. J. Fract. 156, 165–177 (2009)

    Article  Google Scholar 

  • D.J. Littlewood, A nonlocal approach to modeling crack nucleation in AA 7075-T651, in Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, 2011. Paper No. IMECE2011-64236

    Google Scholar 

  • D.J. Littlewood, K. Mish, K. Pierson, Peridynamic simulation of damage evolution for structural health monitoring, in Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, 2012. Paper No. IMECE2012-86400

    Google Scholar 

  • E. Oterkus, E. Madenci, Peridynamics for failure prediction in composites, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, 2012

    Google Scholar 

  • E. Oterkus, E. Madenci, O.Weckner, S. Silling, P. Bogert, A. Tessler, Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos. Struct. 94, 839–850 (2012)

    Google Scholar 

  • M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S.A. Silling, Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179, 777–783 (2008)

    Article  Google Scholar 

  • M.L. Parks, P. Seleson, S.J. Plimpton, S.A. Silling, R.B. Lehoucq, Peridynamics with LAMMPS: a user guide v0.3 beta, Report SAND2011-8523, Sandia National Laboratories, Albuquerque and Livermore, 2011

    Google Scholar 

  • M.L. Parks, D.J. Littlewood, J.A. Mitchell, S.A. Silling, Peridigm users’ guide v1.0.0, Report SAND2012-7800, Sandia National Laboratories, Albuquerque and Livermore, 2012

    Google Scholar 

  • P.D. Seleson, Peridynamic Multiscale Models for the Mechanics of Materials: Constitutive Relations, Upscaling from Atomistic Systems, and Interface Problems, PhD thesis, Florida State University, 2010. Electronic Theses, Treatises and Dissertations. Paper 273

    Google Scholar 

  • P. Seleson, Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations. Comput. Methods Appl. Mech. Eng. 282, 184–217 (2014)

    Article  MathSciNet  Google Scholar 

  • P. Seleson, D.J. Littlewood, Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71, 2432–2448 (2016)

    Article  MathSciNet  Google Scholar 

  • P. Seleson, M.L. Parks, On the role of the influence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)

    Article  Google Scholar 

  • S.A. Silling, Linearized theory of peridynamic states. J. Elast. 99, 85–111 (2010)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  • S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  • S.A. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)

    Article  Google Scholar 

  • M.R. Tupek, J.J. Rimoli, R. Radovitzky, An approach for incorporating classical continuum damage models in state-based peridynamics. Comput. Methods Appl. Mech. Eng. 263, 20–26 (2013)

    Article  MathSciNet  Google Scholar 

  • O. Weckner, R. Abeyaratne, The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)

    Article  MathSciNet  Google Scholar 

  • O. Weckner, G. Brunk, M.A. Epton, S.A. Silling, E. Askari, Green’s functions in non-local three-dimensional linear elasticity. Proc. R. Soc. A 465, 3463–3487 (2009)

    Article  MathSciNet  Google Scholar 

  • J. Xu, A. Askari, O. Weckner, S. Silling, Peridynamic analysis of impact damage in composite laminates. J. Aerosp. Eng. Spec. Issue Impact Mech. Compos. Mater. Aerosp. Appl. 21, 187–194 (2008)

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Householder Fellowship which is jointly funded by: the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program, under award number ERKJE45, and the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory (ORNL), which is operated by UT-Battelle, LLC., for the U.S. Department of Energy under Contract DE-AC05-00OR22725; and by the Laboratory Directed Research and Development program at Sandia National Laboratories, which is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Seleson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Seleson, P., Littlewood, D.J. (2018). Numerical Tools for Improved Convergence of Meshfree Peridynamic Discretizations. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-22977-5_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22977-5_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22977-5

  • Online ISBN: 978-3-319-22977-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics