Skip to main content

Gait Symmetry Measures and Their Relevance to Gait Retraining

  • Reference work entry
  • First Online:
Book cover Handbook of Human Motion

Abstract

A symmetric gait pattern for humans is characterized by the almost identical behavior of bilateral limbs during a gait cycle. This symmetry is usually compromised in pathological gait due to the presence of pain, or as a consequence of an underlying impairment. Over time, the persistence of an asymmetric gait pattern may predispose patients to the development of other musculoskeletal problems. Based on this premise, research has been conducted to confirm the existence of gait asymmetry in various clinical populations and to assess the efficacy and feasibility of gait retraining programs to restore gait symmetry. This chapter explores conventional measures of symmetry, discussing their strengths and limitations in the context of intersession agreement and reliability, sensitivity to changing levels of gait symmetry, and relevance for gait retraining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen JL, Kautz SA, Neptune RR (2011) Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture 33(4):538–543

    Article  Google Scholar 

  • Baker R et al (2009) The gait profile score and movement analysis profile. Gait Posture 30(3):265–269

    Article  MathSciNet  Google Scholar 

  • Barton GJ et al (2015) A gait index may underestimate changes of gait: a comparison of the movement deviation profile and the gait deviation index. Comput Methods Biomech Biomed Engin 18(1):57–63

    Article  Google Scholar 

  • Błażkiewicz M, Wiszomirska I, Wit A (2014) Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng Biomech 16(1):29–35

    Google Scholar 

  • Briem K, Snyder-Mackler L (2009) Proximal gait adaptations in medial knee OA. J Orthop Res 27(1):78–83

    Article  Google Scholar 

  • Cabral S, Fernandes R et al (2016a) Inter-session agreement and reliability of the global gait asymmetry index in healthy adults. Gait Posture 51:20–24

    Article  Google Scholar 

  • Cabral S, Resende RA et al (2016b) A global gait asymmetry index. J Appl Biomech 32(2):171–177

    Article  Google Scholar 

  • Cabral S et al (2017a) Concordância e fiabilidade de índices globais de simetria – influência da fórmula matemática. In: 7o Congresso Nacional de Biomecânica. Portugal

    Google Scholar 

  • Cabral S et al (2017b) The impact of the biomechanical parameters on the intersession agreement and reliability of global gait symmetry indices. In: 26th Congress of the International Society of Biomechanics. Australia

    Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? -arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250

    Article  Google Scholar 

  • Christiansen CL, Stevens-Lapsley JE (2010) Weight-bearing asymmetry in relation to measures of impairment and functional mobility for people with knee osteoarthritis. Arch Phys Med Rehabil 91(10):1524–1528

    Article  Google Scholar 

  • Collins TD et al (2009) A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait Posture 30(2):173–180

    Article  Google Scholar 

  • Crenshaw SJ, Richards JG (2006) A method for analyzing joint symmetry and normalcy, with an application to analyzing gait. Gait Posture 24(4):515–521

    Article  Google Scholar 

  • Della Croce U, Cappozzo A, Kerrigan DC (1999) Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med Biol Eng Comput 37(2):155–161

    Article  Google Scholar 

  • Della Croce U et al (2005) Human movement analysis using stereophotogrammetry part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21:226–237

    Article  Google Scholar 

  • Deluzio KJ, Astephen JL (2007) Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait Posture 25(1):86–93

    Article  Google Scholar 

  • Devan H et al (2015) Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: systematic review. J Rehabil Res Dev 52(1):1–20

    Article  Google Scholar 

  • Dingwell JB, Davis BL, Frazier DM (1996) Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthetics Orthot Int 20(2):101–110

    Google Scholar 

  • Fernandes R et al (2016) Three dimensional multi-segmental trunk kinematics and kinetics during gait: test-retest reliability and minimal detectable change. Gait Posture 46:18–25

    Article  Google Scholar 

  • Gurney B (2002) Leg length discrepancy. Gait Posture 15(2):195–206

    Article  Google Scholar 

  • Haddad JM et al (2010) Relative phase coordination analysis in the assessment of dynamic gait symmetry. J Appl Biomech 26(1):109–113

    Article  Google Scholar 

  • Herzog W et al (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21(1):110–114

    Article  Google Scholar 

  • Hoerzer S et al (2012) A novel methodology using principal component analysis to quantify global bilateral asymmetry of human gait. In: American Society of Biomechanics 36th Annual Meeting, pp. 2–3

    Google Scholar 

  • Hoerzer S et al (2015) Footwear decreases gait asymmetry during running. Plos One 10(10):e0138631

    Article  Google Scholar 

  • Hsiao-Wecksler ET et al (2010) A review of new analytic techniques for quantifying symmetry in locomotion. Symmetry 2(2):1135–1155

    Article  Google Scholar 

  • Jorgensen L et al (2000) Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone 27(5):701–707

    Article  Google Scholar 

  • Kaufman K, Miller L, Sutherland D (1996) Gait asymmetry in patients with limb-length inequality. J Pediatr Orthop 16(2):144–150

    Article  Google Scholar 

  • Lewek MD, Randall EP (2011) Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke. Journal of neurologic physical therapy: JNPT 35(3):116–121

    Article  Google Scholar 

  • Lewek MD et al (2012) Use of visual and proprioceptive feedback to improve gait speed and spatiotemporal symmetry following chronic stroke - a case series. Phys Ther 92(5):748–756

    Article  Google Scholar 

  • Liu XC et al (1998) Kinematic and kinetic asymmetry in patients with leg-length discrepancy. J Pediatr Orthop 18(2):187–189

    MathSciNet  Google Scholar 

  • Lundh D, Coleman S, Riad J (2014) Movement deviation and asymmetry assessment with three dimensional gait analysis of both upper- and lower extremity results in four different clinical relevant subgroups in unilateral cerebral palsy. Clin Biomech 29(4):381–386

    Article  Google Scholar 

  • Maxwell JP, Masters RS, Eves FF (2000) From novice to no know-how - a longitudinal study of implicit motor learning. J Sports Sci 18(2):111–120

    Article  Google Scholar 

  • McGinley JL et al (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29(3):360–369

    Article  Google Scholar 

  • Michalak J, Rohde K, Troje NF (2015) How we walk affects what we remember: gait modifications through biofeedback change negative affective memory bias. J Behav Ther Exp Psychiatry 46:121–125

    Article  Google Scholar 

  • Mills K et al (2013) Between-limb kinematic asymmetry during gait in unilateral and bilateral mild to moderate knee osteoarthritis. Arch Phys Med Rehabil 94(11):2241–2247

    Article  Google Scholar 

  • Nigg S et al (2013) Development of a symmetry index using discrete variables. Gait Posture 38(1):115–119

    Article  Google Scholar 

  • Nolan L et al (2003) Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17(2):142–151

    Article  Google Scholar 

  • Nunnaly JC (1978) Psychometric theory, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Patterson KK et al (2008) Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil 89(2):304–310

    Article  Google Scholar 

  • Patterson KK et al (2010) Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture 31(2):241–246

    Article  Google Scholar 

  • Plotnik M, Giladi N, Hausdorff JM (2007) A new measure for quantifying the bilateral coordination of human gait: effects of aging and Parkinson’s disease. Exp Brain Res 181(4):561–570

    Article  Google Scholar 

  • Reisman D et al (2013) Repeated split-belt treadmill training improves poststroke step length asymmetry. Neurorehabil Neural Repair 27(5):460–468

    Article  Google Scholar 

  • Robinson R, Herzog W, Nigg B (1987) Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J Manip Physiol Ther 10(4):172–176

    Google Scholar 

  • Roerdink M et al (2012) Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed. Gait Posture 35(3):446–451

    Article  Google Scholar 

  • Sadeghi H et al (2000) Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 12(1):34–45

    Article  Google Scholar 

  • Schwartz MH, Trost JP, Wervey R a (2004) Measurement and management of errors in quantitative gait data. Gait Posture 20(2):196–203

    Article  Google Scholar 

  • Senden R et al (2009) Acceleration-based gait test for healthy subjects: reliability and reference data. Gait Posture 30(2):192–196

    Article  Google Scholar 

  • Shakoor N et al (2002) Nonrandom evolution of end-stage osteoarthritis of the lower limbs. Arthritis Rheum 46(12):3185–3189

    Article  Google Scholar 

  • Shakoor N et al (2011) Asymmetric loading and bone mineral density at the asymptomatic knees of patients with unilateral hip osteoarthritis. Arthritis Rheum 63(12):3853–3858

    Article  Google Scholar 

  • Shorter KA et al (2008) A new approach to detecting asymmetries in gait. Clin Biomech 23(4):459–467

    Article  Google Scholar 

  • Sigal L, Balan A, Black M (2010) HUMANEVA: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int J Comput Vis 87(1):324–344

    Google Scholar 

  • Troje NF (2002) Decomposing biological motion - a framework for analysis and synthesis of human gait patterns. J Vis 2(5):371–387

    Article  Google Scholar 

  • Tsai T et al (2015) Asymmetric hip kinematics during gait in patients with unilateral total hip arthroplasty: In vivo 3-dimensional motion analysis. Journal of Biomechanics 48(4):555–559

    Article  Google Scholar 

  • Turcot K et al (2015) Multi-joint postural behavior in patients with knee osteoarthritis. Knee 22(6):1–5

    Article  Google Scholar 

  • Vagenas G, Hoshizaki TB (1989) Ground reaction force asymmetries of normal human gait. Med Sci Sports Exerc 21(5):625–626

    Article  Google Scholar 

  • de Vet HC et al (2006) When to use agreement versus reliability measures. J Clin Epidemiol 59:1033–1039

    Article  Google Scholar 

  • White SC, Lifeso RM (2005) Altering asymmetric limb loading after hip arthroplasty using real-time dynamic feedback when walking. Arch Phys Med Rehabil 86(10):1958–1963

    Article  Google Scholar 

  • Winiarski S, Czamara A (2012) Evaluation of gait kinematics and symmetry during the first two stages of physiotherapy after anterior cruciate ligament reconstruction. Acta Bioeng Biomech 14(2):91–100

    Google Scholar 

  • Wulf G, Shea CH (2002) Principles derived from the study of simple skills do not generalize to complex skill learning. Psychon Bull Rev 9(2):185–211

    Article  Google Scholar 

  • Zifchock RA, Davis I (2008) Non-consecutive versus consecutive footstrikes as an equivalent method of assessing gait asymmetry. J Biomech 41(1):226–230

    Article  Google Scholar 

  • Zifchock RA et al (2008) The symmetry angle: a novel, robust method of quantifying asymmetry. Gait Posture 27(4):622–627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Cabral .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cabral, S. (2018). Gait Symmetry Measures and Their Relevance to Gait Retraining. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_201

Download citation

Publish with us

Policies and ethics