Skip to main content

Ultrasound Technology for Examining the Mechanics of the Muscle, Tendon, and Ligament

  • Reference work entry
  • First Online:
  • 1048 Accesses

Abstract

Ultrasound imaging provides a means to look inside the body and examine how tissues respond to mechanical stress or muscle contraction. As such, it can provide a valuable tool for understanding how muscle, tendon, and ligament mechanics influence the way we move, or vice versa, in health and disease, or to understand how and why these tissues might get injured due to chronic or acute loading. This chapter explores the basic concepts of ultrasound and how it can be used to examine muscle, tendon, and ligament structure and mechanical function. It introduces different techniques, like conventional B-mode imaging, three-dimensional ultrasound, and various forms of elastography that can be used to quantify geometrical and mechanical properties of the muscle, tendon, and ligament. Furthermore, methods to quantify muscle and tendon mechanical function during dynamic human movement are explored, and recommendations provided on which techniques are most suitable for different biomechanical investigations. Finally, some predictions about how new ultrasound imaging technologies might continue to advance our understanding of human motion are proposed and explored.

This is a preview of subscription content, log in via an institution.

References

  • Alexander RM, Bennet-Clark HC (1977) Storage of elastic strain energy in muscle and other tissues. Nature 265:114–117

    Article  Google Scholar 

  • Ates F, Hug F, Bouillard K, Jubeau M, Frappart T, Couade M, Bercoff J, Nordez A (2015) Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity. J Electromyogr Kinesiol 25:703–708

    Article  Google Scholar 

  • Bolsterlee B, Gandevia SC, Herbert RD (2016a) Effect of transducer orientation on errors in ultrasound image-based measurements of human medial gastrocnemius muscle fascicle length and Pennation. PLoS One 11:e0157273

    Article  Google Scholar 

  • Bolsterlee B, Gandevia SC, Herbert RD (2016b) Ultrasound imaging of the human medial gastrocnemius muscle: how to orient the transducer so that muscle fascicles lie in the image plane. J Biomech 49:1002–1008

    Article  Google Scholar 

  • Bouillard K, Hug F, Guevel A, Nordez A (2012) Shear elastic modulus can be used to estimate an index of individual muscle force during a submaximal isometric fatiguing contraction. J Appl Physiol (1985) 113:1353–1361

    Article  Google Scholar 

  • Braekken IH, Majida M, Engh ME, Bo K (2009) Test-retest reliability of pelvic floor muscle contraction measured by 4D ultrasound. Neurourol Urodyn 28:68–73

    Article  Google Scholar 

  • Chernak Slane L, Thelen DG (2014) The use of 2D ultrasound elastography for measuring tendon motion and strain. J Biomech 47:750–754

    Article  Google Scholar 

  • Cooperberg PL, Barberie JJ, Wong T, Fix C (2001) Extended field-of-view ultrasound. Semin Ultrasound CT MR 22:65–77

    Article  Google Scholar 

  • Cronin NJ, Carty CP, Barrett RS, Lichtwark G (2011) Automatic tracking of medial gastrocnemius fascicle length during human locomotion. J Appl Physiol (1985) 111:1491–1496

    Article  Google Scholar 

  • Darby J, Hodson-Tole EF, Costen N, Loram ID (2012) Automated regional analysis of B-mode ultrasound images of skeletal muscle movement. J Appl Physiol (1985) 112:313–327

    Article  Google Scholar 

  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54:1940–1950

    Article  Google Scholar 

  • Farris DJ, Lichtwark GA (2016) UltraTrack: software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput Methods Prog Biomed 128:111–118

    Article  Google Scholar 

  • Finni T, Peltonen J, Stenroth L, Cronin NJ (2013) Viewpoint: on the hysteresis in the human Achilles tendon. J Appl Physiol (1985) 114:515–517

    Article  Google Scholar 

  • Franz JR, Slane LC, Rasske K, Thelen DG (2015) Non-uniform in vivo deformations of the human Achilles tendon during walking. Gait Posture 41:192–197

    Article  Google Scholar 

  • Franz JR, Thelen DG (2015) Depth-dependent variations in Achilles tendon deformations with age are associated with reduced plantarflexor performance during walking. J Appl Physiol (1985) 119:242–249

    Article  Google Scholar 

  • Fukashiro S, Itoh M, Ichinose Y, Kawakami Y, Fukunaga T (1995) Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur J Appl Physiol Occup Physiol 71:555–557

    Article  Google Scholar 

  • Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S (1997) Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol (1985) 82:354–358

    Article  Google Scholar 

  • Fukunaga T, Kubo K, Kawakami Y, Fukashiro S, Kanehisa H, Maganaris CN (2001) In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 268:229–233

    Article  Google Scholar 

  • Gillett JG, Barrett RS, Lichtwark GA (2013) Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound. Comput Methods Biomech Biomed Engin 16:678–687

    Article  Google Scholar 

  • Grieve DW, Pheasant S, Cavanagh PR (1978) Prediction of gastrocnemius length from knee and ankle joint posture. Biomechanics vi-a. University Park Press, Baltimore

    Google Scholar 

  • Hansen P, Bojsen-Moller J, Aagaard P, Kjaer M, Magnusson SP (2006) Mechanical properties of the human patellar tendon, in vivo. Clin Biomech (Bristol, Avon) 21:54–58

    Article  Google Scholar 

  • Hawkins D, Hull ML (1990) A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech 23:487–494

    Article  Google Scholar 

  • Helfenstein-Didier C, Andrade RJ, Brum J, Hug F, Tanter M, Nordez A, Gennisson JL (2016) In vivo quantification of the shear modulus of the human Achilles tendon during passive loading using shear wave dispersion analysis. Phys Med Biol 61:2485–2496

    Article  Google Scholar 

  • Herbert RD, Gandevia SC (1995) Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle. J Physiol 484(Pt 2):523–532

    Article  Google Scholar 

  • Hug F, Lacourpaille L, Maisetti O, Nordez A (2013) Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles. J Biomech 46:2534–2538

    Article  Google Scholar 

  • Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A (2015) Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev 43:125–133

    Article  Google Scholar 

  • Ihnatsenka B, Boezaart AP (2010) Ultrasound: basic understanding and learning the language. Int J Shoulder Surg 4:55–62

    Article  Google Scholar 

  • Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 26:26–32

    Google Scholar 

  • Jia R, Mellon S, Monk P, Murray D, Noble JA (2016) A computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system for the description of hip joint kinematics. Int J Comput Assist Radiol Surg 11:1965–1977

    Article  Google Scholar 

  • Kallinen M, Suominen H (1994) Ultrasonographic measurements of the Achilles tendon in elderly athletes and sedentary men. Acta Radiol 35:560–563

    Article  Google Scholar 

  • Kane D, Grassi W, Sturrock R, Balint PV (2004) A brief history of musculoskeletal ultrasound: ‘from bats and ships to babies and hips’. Rheumatology (Oxford) 43:931–933

    Article  Google Scholar 

  • Karamanidis K, Stafilidis S, Demonte G, Morey-Klapsing G, Bruggemann GP, Arampatzis A (2005) Inevitable joint angular rotation affects muscle architecture during isometric contraction. J Electromyogr Kinesiol 15:608–616

    Article  Google Scholar 

  • Kawakami Y, Abe T, Fukunaga T (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol (1985a) 74:2740–2744

    Article  Google Scholar 

  • Kawakami Y, Ichinose Y, Fukunaga T (1998) Architectural and functional features of human triceps surae muscles during contraction. J Appl Physiol (1985b) 85:398–404

    Article  Google Scholar 

  • Korstanje JW, Selles RW, Stam HJ, Hovius SE, Bosch JG (2010) Development and validation of ultrasound speckle tracking to quantify tendon displacement. J Biomech 43:1373–1379

    Article  Google Scholar 

  • Lee SS, Lewis GS, Piazza SJ (2008) An algorithm for automated analysis of ultrasound images to measure tendon excursion in vivo. J Appl Biomech 24:75–82

    Article  Google Scholar 

  • Lichtwark GA, Cresswell AG, Ker RF, Reeves ND, Maganaris CN, Magnusson SP, Svensson RB, Coupe C, Hershenhan A, Eliasson P, Nordez A, Foure A, Cornu C, Arampatzis A, Morey-Klapsing G, Mademli L, Karamanidis K, Vagula MC, Nelatury SR (2013) Commentaries on viewpoint: on the hysteresis in the human Achilles tendon. J Appl Physiol (1985) 114:518–520

    Article  Google Scholar 

  • Lichtwark GA, Wilson AM (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J Exp Biol 208:4715–4725

    Article  Google Scholar 

  • Lichtwark GA, Wilson AM (2006) Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. J Exp Biol 209:4379–4388

    Article  Google Scholar 

  • Lindop JE, Treece GM, Gee AH, Prager RW (2006) 3D elastography using freehand ultrasound. Ultrasound Med Biol 32:529–545

    Article  Google Scholar 

  • Loram ID, Maganaris CN, Lakie M (2006) Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. J Appl Physiol (1985) 100:1311–1323

    Article  Google Scholar 

  • Maganaris CN (2005) Validity of procedures involved in ultrasound-based measurement of human plantarflexor tendon elongation on contraction. J Biomech 38:9–13

    Article  Google Scholar 

  • Maganaris CN, Paul JP (1999) In vivo human tendon mechanical properties. J Physiol 521(Pt 1):307–313

    Article  Google Scholar 

  • Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496(Pt 1):287–297

    Article  Google Scholar 

  • Nightingale K (2011) Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev 7:328–339

    Article  Google Scholar 

  • Noorkoiv M, Nosaka K, Blazevich AJ (2010a) Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol 109:631–639

    Article  Google Scholar 

  • Noorkoiv M, Stavnsbo A, Aagaard P, Blazevich AJ (2010b) In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography. J Appl Physiol (1985) 109:1974–1979

    Article  Google Scholar 

  • Nordez A, Gallot T, Catheline S, Guevel A, Cornu C, Hug F (2009) Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol (1985) 106:1970–1975

    Article  Google Scholar 

  • Obst SJ, Newsham-West R, Barrett RS (2014) In vivo measurement of human achilles tendon morphology using freehand 3-D ultrasound. Ultrasound Med Biol 40:62–70

    Article  Google Scholar 

  • Onambele GN, Burgess K, Pearson SJ (2007) Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J Orthop Res 25:1635–1642

    Article  Google Scholar 

  • Passmore E, Sangeux M (2016) Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging. Gait Posture 45:211–216

    Article  Google Scholar 

  • Pearson SJ, Burgess K, Onambele GN (2007) Creep and the in vivo assessment of human patellar tendon mechanical properties. Clin Biomech (Bristol, Avon) 22:712–717

    Article  Google Scholar 

  • Peters A, Baker R, Sangeux M (2010) Validation of 3-D freehand ultrasound for the determination of the hip joint centre. Gait Posture 31:530–532

    Article  Google Scholar 

  • Pollock CM, Shadwick RE (1994) Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am J Phys 266:R1022–R1031

    Google Scholar 

  • Powell PL, Roy RR, Kanim P, Bello MA, Edgerton VR (1984) Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J Appl Physiol Respir Environ Exerc Physiol 57:1715–1721

    Google Scholar 

  • Raiteri BJ, Cresswell AG, Lichtwark GA (2016) Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions. PeerJ 4:e2260

    Article  Google Scholar 

  • Rana M, Hamarneh G, Wakeling JM (2009) Automated tracking of muscle fascicle orientation in B-mode ultrasound images. J Biomech 42:2068–2073

    Article  Google Scholar 

  • Slane LC, Thelen DG (2014) Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading. J Biomech 47:2831–2835

    Article  Google Scholar 

  • Slane LC, Martin J, Dewall R, Thelen D, Lee K (2016) Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur Radiol 27(2):474–482

    Google Scholar 

  • Telfer S, Woodburn J, Turner DE (2014) An ultrasound based non-invasive method for the measurement of intrinsic foot kinematics during gait. J Biomech 47:1225–1228

    Article  Google Scholar 

  • Treece GM, Gee AH, Prager RW, Cash CJ, Berman LH (2003) High-definition freehand 3-D ultrasound. Ultrasound Med Biol 29:529–546

    Article  Google Scholar 

  • Treece G, Lindop J, Chen L, Housden J, Prager R, Gee A (2011) Real-time quasi-static ultrasound elastography. Interface Focus 1:540–552

    Article  Google Scholar 

  • Varghese T (2009) Quasi-static ultrasound Elastography. Ultrasound Clin 4:323–338

    Article  Google Scholar 

  • Wakeling JM, Jackman M, Namburete AI (2013) The effect of external compression on the mechanics of muscle contraction. J Appl Biomech 29:360–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Lichtwark .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lichtwark, G. (2018). Ultrasound Technology for Examining the Mechanics of the Muscle, Tendon, and Ligament. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_156

Download citation

Publish with us

Policies and ethics