Skip to main content

Space Biology (Cells to Amphibians)

Book cover Encyclopedia of Bioastronautics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bakos A, Varkonyi A, Minarovits J, Batkai L (2001) Effect of simulated microgravity on human lymphocytes. J Gravit Physiol 8:P69–P70

    Google Scholar 

  • Balaban PM, Malyshev AY, Ierusalimsky VN, Aseev NA, Korshunova TA, Bravarenko NI, Lemak MS, Roschin MV, Zakharov IS, Popova Y, Boyle R (2011) Functional changes in the snail Statocyst system elicited by microgravity. PLoS One 6(3):1–13

    Article  Google Scholar 

  • Blüm V, Paris F (1999) The C.E.B.A.S. mini module on STS-107: a third spaceflight of an artificial aquatic ecosystem based on the results of STS-89 and STS-90 missions. Gravitational Space Bull 13:48

    Google Scholar 

  • Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G, Meloni MA, Hughes-Fulford M (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19:2020–2022

    Article  Google Scholar 

  • Boyle R, Mensinger AF, Yoshida K, Usui S, Intravaia A, Tricas T, Highstein SM (2001) Neural readaptation to 1G following return from space. J Neurophysiol 86:2118–2122

    Article  Google Scholar 

  • Boyle R, Popova Y, Varelas J (2018) Influence of magnitude and duration of altered gravity and readaptation to 1g on the structure and function of the utricle in toadfish, Opsanus tau. Front Physiol 9:1469. https://doi.org/10.3389/fphys.2018.01469

    Article  Google Scholar 

  • Bracchi F, Gualtierotti T, Morabito A, Rocca E (1975) Multiday recordings from the primary neurons of the statoreceptors of the labyrinth of the bull frog. The effect of an extended period of “weightlessness” on the rate of firing at rest and in response to stimulation by brief periods of centrifugation (OFO-A orbiting experiment). Acta Otolaryngol Suppl 334:1–27

    Google Scholar 

  • Cao W, Medvedev AV, Daniel KW, Collins S (2001) Beta-adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein-1 (UCP1) gene requires p38 MAP kinase. J Biol Chem 276:27077–27082

    Article  Google Scholar 

  • Chang TT, Walther I, Li CF, Boonyaratanakornkit J, Galleri G, Meloni MA, Pippia P, Cogoli A, Hughes-Fulford M (2012) The Rel/NF-kappaB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 92:1133–1145

    Article  Google Scholar 

  • Cogoli A (1993) Space flight and the immune system. Vaccine 11:496–503

    Article  Google Scholar 

  • Cogoli A (1997) Signal transduction in T lymphocytes in microgravity. Gravit Space Biol Bull 10:5–16

    Google Scholar 

  • Cogoli A, Cogoli-Greuter M (1997) Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6:33–79

    Article  Google Scholar 

  • Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225:228–230

    Article  Google Scholar 

  • Cohen B, Yakushin SB, Holstein GR, Dai M, Tomko DL, Badakva AM, Kozlovskaya IB (2005) Vestibular experiments in space. Adv Space Biol Med 10:105–164

    Article  Google Scholar 

  • Gorgiladze GI, Kozyrev SA, Nosovskii AM (2002a) Electrophysiological characteristics of the statocyst receptor cells in snails Helix lucorum following exposure to microgravity in unmanned spacecraft “Foton” and piloted space station “Mir”. Aviakosm Ekolog Med 36:41–46

    Google Scholar 

  • Gorgiladze GI, Kozyrev SA, Nosovskii AM (2002b) Effect of static and dynamic influences on receptors of equilibrium organ of Helix lucorum after 163-day orbital flight in “Mir” station. Exp Biol Med 2:114–118

    Article  Google Scholar 

  • Gualtierotti T (1977) The vestibular function research programme as a part of the spacelab project: an investigation of the effect of free fall on unitary and integrated vestibular activity. Proc R Soc Lond B Biol Sci 199:493–503

    Article  Google Scholar 

  • Hale N, Lane H, Llla K, Chapline G (eds) (2011) Wings in orbit: scientific and engineering legacies of the space shuttle, 1971–2010. NASA, Washington, DC

    Google Scholar 

  • Hawkins W, Zieglschmid J (1975) Clinical aspects of crew health. In: Johnston R, Dietlein L, Berry C (eds) Biomedical results of Apollo. NASA, Washington, DC, pp 43–81

    Google Scholar 

  • Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109

    Article  Google Scholar 

  • Hughes-Fulford M, Sugano E, Schopper T, Li CF, Boonyaratanakornkit JB, Cogoli A (2005) Early immune response and regulation of IL-2 receptor subunits. Cell Signal 17:1111–1124

    Article  Google Scholar 

  • Jellyfish Launch EVMS Scientist On A Space Odyssey (1994) EVMS Now (Eastern Virginia Medical School alumni. magazine) 1:10–14

    Google Scholar 

  • Kimzey S (1977a) Hematology and immunology studies. In: Dietlein RJL (ed) Biomedical results from Skylab. National Aeronautics and Space Administration, Washington, DC, pp 249–283

    Google Scholar 

  • Kimzey SL (1977b) Hematology and immunology studies. In: Johnson RS, Dietlein LF (eds) Biomedical results from Skylab. NASA, Washington, DC, pp 248–282

    Google Scholar 

  • Leach CS, Rambaut PC (1977) Biochemical responses of the Skylab crewmen: an overview. In: Johnson RS, Dietlein LF (eds) Biomedical results from Skylab. NASA, Washington, DC, pp 204–216

    Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

    Article  Google Scholar 

  • Lewis ML, Cubano LA, Zhao B, Dinh HK, Pabalan JG, Piepmeier EH, Bowman PD (2001) cDNA microarray reveals altered cytoskeletal gene expression in space- flown leukemic T lymphocytes (Jurkat). FASEB J 15:1783–1785

    Article  Google Scholar 

  • Liftoff to Learning: From Undersea to Outer Space (1997) NASA Video Resource Guide - EV-1997-07-004-HQ; https://er.jsc.nasa.gov/seh/From_Undersea_To_Outer_Space.pdf

  • Lychakov DV, Lavrova YEE (1985) Investigations of vestibular structure and ion composition of spur-toed frog larvae after exposure to weightlessness. Kosmicheskaya Biologiciya i Aviakosmicheskaya Med 19:48–52

    Google Scholar 

  • Martinez EM et al (2015) Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation. Am J Phys Regul Integr Comp Phys 308:R480–R488

    Google Scholar 

  • Mensinger AF, Anderson DJ, Buchko CJ, Johnson MA, Martin DC, Tresco PA, Silver RB, Highstein SM (2000) Chronic recording of regenerating VIIIth nerve axons with a sieve electrode. J Neurophysiol 83:611–615

    Article  Google Scholar 

  • Neubert J, Briegleb W, Schatz A, Hertwig I, Kruse B (1986) Observations on structure and function of the gravireceptor in a vertebrate (Xenopus laevis) exposed to near weightlessness. In: Sahm PR, Jansen R, Keller MH (eds) Proceedings of the Norderney symposium on scientific results of the German Spacelab Mission D1. Wissenshcaftliches Projektfuhrung D1. D1, Köln, pp 423–430

    Google Scholar 

  • Pedrozo HA, Wiederhold ML (1994) Effects of hypergravity on statocyst development in embryonic Aplysia californica. Hear Res 79:137–146

    Article  Google Scholar 

  • Popova Y, Boyle R (2015) Neural response in vestibular organ of Helix aspersa to centrifugation and re-adaptation to normal gravity. J Comp Physiol A 201:717–729. https://doi.org/10.1007/s00359-015-1003-x

    Article  Google Scholar 

  • Souza KA, Black SD, Wassersug RJ (1995) Development in the virtual absence of gravity. Proc Natl Acad Sci 92:175–178

    Article  Google Scholar 

  • Spangenberg DB, Jernigan T, McCombs R, Lowe BT, Sampson M, Slusser J (1994a) Development studies of Aurelia (jellyfish) Ephyrae which developed during the SLS-1 Mission. Adv Space Res 14:239–247

    Article  Google Scholar 

  • Spangenberg DB, Jernigan T, Philput C, Lowe B (1994b) Graviceptor development in space and on earth. Adv Space Res 14:317–325

    Article  Google Scholar 

  • Stensiö EA (1927) The Devonian and Downtonian vertebrates of Spitsbergen. 1. Family Cephalaspidae. Skrifter om Svalbard og Ishavet 12:1–391

    Google Scholar 

  • Stowe RP, Mehta SK, Ferrando AA, Feeback DL, Pierson DL (2001) Immune responses and latent herpesvirus reactivation in spaceflight. Aviat Space Environ 72:884–891

    Google Scholar 

  • Taylor GR (1993) Immune changes in humans concomitant with space flights of up to 10 days duration. Physiologist 36(1 Suppl):S71–S74

    Google Scholar 

  • Taylor G, Janney R (1992) In vivo testing confirms a blunting of the human cell-mediated immune mechanism during spaceflight. J Leukoc Biol 51:129–132

    Article  Google Scholar 

  • Taylor K, Kleinhesselink K, George MD, Morgan R, Smallwood T, Hammonds AS, Fuller PM, Saelao P, Alley J, Gibbs AG, Hoshizaki DK, von KL, Fuller CA, Beckingham KM, Kimbrell DA (2014) Toll mediated infection response is altered by gravity and spaceflight in Drosophila. PLoS One 9:1–12. https://doi.org/10.1371/journal.pone.0086485

    Article  Google Scholar 

  • Unsworth BR, Lelkes PI (1998) Growing tissues in microgravity. Nat Med 14:901–907

    Article  Google Scholar 

  • Vinnikov YA, Gazenko OG, Titova LK et al (1976) The development of the vestibular apparatus under conditions of weightlessness. Arkhiv anatomii. Gistologii i embrioloigii 1:11–16

    Google Scholar 

  • Vinnikov YA, Gazenko OG, Lychakov DV, Pal’mbakh LR (1983) The development of the vestibular apparatus under conditions of weightlessness. Shurnal obshchey biologii 44:147–163

    Google Scholar 

  • Walther I, Pippia P, Meloni MA, Turrini F, Mannu F, Cogoli A (1998) Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 436:115–118

    Article  Google Scholar 

  • Wiederhold ML, Pedrozo HA, Harrison JL, Hejl R, Gao W (1997) Development of gravity-sensing organs in altered gravity conditions: opposite conclusions from an amphibian and a molluscan preparation. J Grav Physiol 4:P51–P54

    Google Scholar 

  • Wiederhold ML, Harrison JL, Parker K, Nomura H (2000) Otoliths developed in microgravity. J Grav Physiol 7:P39–P42

    Google Scholar 

  • Wiederhold ML, Gao W, Harrison JL, Parker KA (2003) Early development of gravity-sensing organs in microgravity. In: Buckey Jr JC, Homick JL (eds) The neurolab spacelab mission: neuroscience research in space: results from the STS-90, neurolab spacelab mission. Government Printing Office, Houston, TX, USA. pp 123–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Boyle .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boyle, R., Hughes-Fulford, M. (2019). Space Biology (Cells to Amphibians). In: Young, L., Sutton, J. (eds) Encyclopedia of Bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10152-1_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10152-1

  • Online ISBN: 978-3-319-10152-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Space Biology (Cells to Amphibians)
    Published:
    08 December 2020

    DOI: https://doi.org/10.1007/978-3-319-10152-1_39-2

  2. Original

    Space Biology (Cells to Amphibians)
    Published:
    25 February 2019

    DOI: https://doi.org/10.1007/978-3-319-10152-1_39-1