Skip to main content

Space Radiation Shielding

Encyclopedia of Bioastronautics

Definition

Both short- and long-term health risks from exposure to galactic cosmic rays (GCRs) and solar energetic particles (SEPs) are potentially limiting factors in the human exploration of deep space. A significant portion of the risk is attributable to the presence of high-energy heavy ions in space, particles that do not exist on the surface of the Earth and which are known to cause biological damage disproportionate to the physical dose they impart. Large uncertainties remain in our knowledge of the biological effects of high-energy heavy ions, particularly at the low dose rates encountered in space (Cucinotta 2015).

In conventional radiation protection, three principles apply: (1) minimize the duration of the exposure; (2) maximize the distance from the source; (3) place shielding between personnel and the source whenever possible. In space, the first two principles cannot be readily applied, and the utility of shielding is severely limited by the high cost of launch and by the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams JH et al (2005) Revolutionary concepts of radiation shielding for human exploration of space. NASA TM 213688

    Google Scholar 

  • Agostinelli S et al (2003) GEANT4 – a simulation toolkit. Nucl Instr Meth A 506:250–303

    Article  Google Scholar 

  • Baade W, Zwicky F (1934) On super-novae. Proc Natl Acad Sci 20(5):254–259

    Article  Google Scholar 

  • Bamford RA et al (2014) An exploration of the effectiveness of artificial mini-magnetospheres as a potential solar storm shelter for long term human space missions. Acta Astronaut 105(2):385–394

    Article  Google Scholar 

  • Barao F (2004) AMS – alpha magnetic spectrometer on the international space station. Nucl Instrum Methods Phys Res, Sect A 535(1):134–138

    Article  Google Scholar 

  • Berger MJ (1992) ESTAR, PSTAR and ASTAR: computer codes for calculating stopping power and range tables for electrons, protons and helium ions. National Institute of Standards and Technology report, NISTIR 4999

    Google Scholar 

  • Bethe H (1930) Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann Phys 397(3):325–400

    Article  MATH  Google Scholar 

  • Blasi P (2013) The origin of galactic cosmic rays. Astron Astrophys Rev 21(1):1–73

    Article  MathSciNet  Google Scholar 

  • Blau B et al (2002) The superconducting magnet system of AMS-02-a particle physics detector to be operated on the international space station. Appl Supercond IEEE Trans 12(1):349–352

    Article  Google Scholar 

  • Bradt HL, Peters B (1950) The heavy nuclei of the primary cosmic radiation. Phys Rev 77(1):54

    Article  Google Scholar 

  • Brenner DJ et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci 100(24):13761–13766

    Article  Google Scholar 

  • Calvelli V, Farinon S, Burger, WJ, Battiston R (2014) Space radiation superconducting shields. In Journal of Physics: Conference Series 507(3), p. 032033). IOP Publishing

    Google Scholar 

  • Charbonneau P (2014) Solar dynamo theory. Annu Rev Astron Astrophys 52:251–290

    Article  Google Scholar 

  • Cliver EW, Dietrich WF (2013) The 1859 space weather event revisited: limits of extreme activity. J Space Weather Space Clim 3:A31

    Article  Google Scholar 

  • Cucinotta (2015) A new approach to reduce uncertainties in space radiation cancer risk predictions. PLoS One. https://doi.org/10.1371/journal.pone.0120717

    Article  Google Scholar 

  • Cucinotta FA et al (1991) Biological effectiveness of high-energy protons: target fragmentation. Radiat Res 127(2):130–137

    Article  Google Scholar 

  • Cucinotta FA, Kim MHY, Ren L (2006) Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas 41(9):1173–1185

    Article  Google Scholar 

  • Cucinotta FA, Kim MHY, Chappell L (2012) Space radiation cancer risk projections and uncertainties- 2012. NASA TP 2013-217375

    Google Scholar 

  • Del Rosso A (2015) A superconducting shield to protect astronauts. CERN Bull. Issue no 32–33/2015, 3 August 2015

    Google Scholar 

  • Detmold W (2015) Nuclear physics from lattice QCD. Lattice QCD for nuclear physics. Springer International Publishing, Berlin. pp 153–194

    Google Scholar 

  • Durante M, Cucinotta FA (2011) Physical basis of radiation protection in space travel. Rev Mod Phys 83(4):1245

    Article  Google Scholar 

  • Hathaway DH (2010) The solar cycle. Living Rev Solar Phys 7:1. http://www.livingreviews.org/lrsp-2010-1. Cited on 15 Aug 2015

    Article  Google Scholar 

  • Hess VF (1913) Ãœber den Ursprung der durchdringenden Strahlung. Z Phys 14:610

    Google Scholar 

  • International Commission on Radiological Protection (1991) ICRP publication 60: 1990 recommendations of the international commission on radiological protection. no. 60. Elsevier Health Sciences, Oxford

    Google Scholar 

  • Landis GA (1991) Magnetic radiation shielding- an idea whose time has returned? In: Space manufacturing 8 – Energy and materials from space; Proceedings of the 10th Princeton/AIAA/SSI Conference, Princeton, NJ, (A92-17751 05-12). Washington, DC, American Institute of Aeronautics and Astronautics, p. 383–386.

    Google Scholar 

  • Levy RH (1961) Radiation shielding of space vehicles by means of superconducting coils. Structure 1:2

    Google Scholar 

  • Matthiä D et al (2013) A ready-to-use galactic cosmic ray model. Adv Space Res 51(3):329–338

    Article  Google Scholar 

  • Mewaldt RA et al. (2005) Solar-particle energy spectra during the large events of October-November 2003 and January 2005. International cosmic ray conference, vol. 1

    Google Scholar 

  • Moyers MF, Saganti PB, Nelson GA (2006) EVA space suit proton and electron threshold energy measurements by XCT and range shifting. Radiat Meas 41(9):1216–1226

    Article  Google Scholar 

  • Niita K et al (2006) PHITS – a particle and heavy ion transport code system. Radiat Meas 41(9):1080–1090

    Article  Google Scholar 

  • Nymmik RA, Panasyuk MI, Suslov AA (1996) Galactic cosmic ray flux simulation and prediction. Adv Space Res 17(2):19–30

    Article  Google Scholar 

  • O’Neill PM, Golge S, Slaba, TC (2015) Badhwar – O’Neill 2014 galactic cosmic ray flux model. NASA/TP 218569

    Google Scholar 

  • Oh JH et al (2015) Study on radiation production in the charge stripping section of the RISP linear accelerator. J Korean Phys Soc 66(3):432–438

    Article  Google Scholar 

  • Olive KA et al (Particle Data Group) (2014) Review of particle physics. Chin Phys C 38:090001

    Google Scholar 

  • Paganetti H (2002) Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 47(5):747

    Article  Google Scholar 

  • Parker EN (2006) Shielding space explorers from cosmic rays. Space Weather 3:8

    Google Scholar 

  • Reames D (1999) Solar energetic particles: is there time to hide? Radiat Meas 30(3):297–308

    Article  Google Scholar 

  • Reitz G et al (2005) Space radiation measurements on-board ISS – the DOSMAP experiment. Radiat Prot Dosim 116(1–4):374–379

    Article  Google Scholar 

  • Ronningen RM, Remec I, Heilbronn LH (2013) Benchmarking heavy ion transport codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS. No. DOE/ER/41548. Michigan State University, East Lansing, MI (US)

    Google Scholar 

  • Schwabe H (1844) Sonnen-Beobachtungen im Jahre 1843. Astron Nachr 21(495):233–236

    Google Scholar 

  • Shinn JL, Wilson JW (1992) An efficient heavy ion transport code: HZETRN. NASA TP-3147

    Google Scholar 

  • Sihver L et al (2007) Recent developments and benchmarking of the PHITS code. Adv Space Res 40(9):1320–1331

    Article  Google Scholar 

  • Singleterry RC et al (2011) OLTARIS: on-line tool for the assessment of radiation in space. Acta Astronaut 68(7):1086–1097

    Article  Google Scholar 

  • Slaba TC, Blattnig SR, Badavi FF (2010) Faster and more accurate transport procedures for HZETRN. J Comput Phys 229(24):9397–9417

    Article  MATH  Google Scholar 

  • Smart DF, Shea MA, McCracken KG (2006) The carrington event: possible solar proton intensity – time profile. Adv Space Res 38(2):215–225

    Article  Google Scholar 

  • Spence HE et al (2010) CRaTER: the cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission. Space Sci Rev 150(1–4):243–284

    Article  Google Scholar 

  • Spillantini P et al (2007) Shielding from cosmic radiation for interplanetary missions: active and passive methods. Radiat Meas 42(1):14–23

    Article  Google Scholar 

  • Stephens DL, Townsend LW, Hoff JL (2005) Interplanetary crew dose estimates for worst case solar particle events based on historical data for the carrington flare of 1859. Acta Astronaut 56(9):969–974

    Article  Google Scholar 

  • Stiles LA et al (2013) Electrostatically inflated gossamer space structure voltage requirements due to orbital perturbations. Acta Astronaut 84:109–121

    Article  Google Scholar 

  • Stone EC et al (2013) Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341(6142):150–153

    Article  Google Scholar 

  • Townsend LW (2005) Critical analysis of active shielding methods for space radiation protection. Aerospace conference, 2005 IEEE

    Google Scholar 

  • Townsend LW, and Wilson JW (1986) Energy-dependent parameterization of heavy-ion absorption cross sections. Radiation research 106(3):283–287

    Article  Google Scholar 

  • Townsend LW et al (2006) The carrington event: possible doses to crews in space from a comparable event. Adv Space Res 38(2):226–231

    Article  Google Scholar 

  • Towsend LW (1984) Galactic heavy-ion shielding using electrostatic fields. NASA Technical Memorandum 86265

    Google Scholar 

  • Tripathi RK, Wilson JW, Youngquist RC (2008) Electrostatic space radiation shielding. Adv Space Res 42(6):1043–1049

    Article  Google Scholar 

  • Tylka AJ, Dietrich WF (1999) IMP-8 observations of the spectra, composition, and variability of solar heavy ions at high energies relevant to manned space missions. Radiat Meas 30(3):345–359

    Article  Google Scholar 

  • Tylka AJ, Dietrich WF (2009) A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proceedings of the 31st ICRC, Lodz, pp 7–15

    Google Scholar 

  • Vuolo M et al (2015) Monte Carlo simulations for the space radiation superconducting shield project (SR2S). Life Sci Space Res 8:22–29

    Article  Google Scholar 

  • Westover SC et al. (2014) Magnet architectures and active radiation shielding study (MAARS), final report for NASA innovative advanced concepts phase I. NASA TP-2014-217390

    Google Scholar 

  • Wilson JW et al (1995) Issues in space radiation protection: galactic cosmic rays. Health Phys 68(1):50–58

    Article  Google Scholar 

  • Wolff EW et al (2012) The carrington event not observed in most ice core nitrate records. Geophys Res Lett 39(8):L08503

    Article  Google Scholar 

  • Zeitlin C, Heilbronn L, Miller J (1998) Detailed characterization of the 1087 MeV/nucleon iron-56 beam used for radiobiology at the alternating gradient synchrotron. Radiation research 149(6):560–569

    Article  Google Scholar 

  • Zeitlin C (2012) Physical interactions of charged particles for radiotherapy and space applications. Health Phys 103(5):540–546

    Article  Google Scholar 

  • Zeitlin C et al (2006) Measurements of materials shielding properties with 1 GeV/nuc 56Fe. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 252(2):308–318

    Article  Google Scholar 

  • Zeitlin C et al (2013a) Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340(6136):1080–1084

    Article  Google Scholar 

  • Zeitlin C et al (2013b) Measurements of galactic cosmic ray shielding with the CRaTER instrument. Space Weather 11(5):284–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cary Zeitlin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zeitlin, C. (2019). Space Radiation Shielding. In: Young, L., Sutton, J. (eds) Encyclopedia of Bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10152-1_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10152-1

  • Online ISBN: 978-3-319-10152-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Space Radiation Shielding
    Published:
    18 December 2020

    DOI: https://doi.org/10.1007/978-3-319-10152-1_28-2

  2. Original

    Space Radiation Shielding
    Published:
    28 February 2019

    DOI: https://doi.org/10.1007/978-3-319-10152-1_28-1