Skip to main content

Carrier Recombination and Noise

Book cover Semiconductor Physics

Abstract

In steady state, for each act of carrier generation or excitation there must be one inverse process of recombination or relaxation. Carriers can return immediately or after scattering to their original state, or they can recombine radiatively or nonradiatively with another state.

Nonradiative recombination is almost always defect-center controlled; it releases energy in the form of phonons, or in Auger recombination, by accelerating another electron. Phonon emission occurs as a single-phonon process when trapping a carrier at a shallow defect center, or as a multiphonon emission when recombination occurs at a deep center. In carrier traps, which are located close to one band, excitation into the adjacent band and trapping at the center dominate, while in recombination centers, which are located closer to the center of the bandgap, carriers recombine from one band to the other. The capture cross-section of defect centers spread over more than 12 orders of magnitude.

Radiative recombination proceeds as an emission delayed by the lifetime of an excited state and changed in energy after relaxation of the excited state. The spectral distribution of the luminescence is related to the electronic structure of the semiconductor and its defects. The sharp low-temperature spectra of shallow-level defects in pure crystals are well understood, while the assignment of the broad emissions of deep defects with strong lattice coupling is usually difficult.

The random fluctuation of individual carrier motion and carrier generation-recombination creates noise. Equilibrium noise is caused by the Brownian motion of carriers and independent of the frequency. Nonequilibrium noise is generated upon optical excitation or current injection and has usually a typical 1/f frequency dependence. It is composed of various contributions; a fundamental part originates from energy loss by low-frequency bremsstrahlung in basically elastic scattering processes. Noise creates a lower limit for signal detection.

K. W. Böer: deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    It is interesting to see that Eq. 24 can be rewritten, using the quasi-hydrogen energy EqH, as

    $$ {\tau}_{\mathrm{A}}\cong \frac{h}{E_{\mathrm{qH}}}\frac{E_{\mathrm{g}}}{k\;T}\exp \left(\frac{E_{\mathrm{g}}}{k\;T}\right). $$
    (25)

    The first part of Eq. 25 represents the Heisenberg uncertainty relation, indicating that τA cannot be smaller than the Heisenberg uncertainty time for an exciton, τA ≥ l.6·10−13 s. This presents a lower limit for EgkT for the approximation used.

  2. 2.

    Other radiation due to nonlinear optical processes, such as photon (Raman or Brillouin) scattering and higher harmonic generation, are also excluded in this discussion. These are discussed in Sect. 3.3 of chapter “Photon–Phonon Interaction”.

  3. 3.

    The binding energy of excitons bound to donors or acceptors is proportional to the ionization energy of these defects (Hayne’s rule, Sect. 2.2 of chapter “Shallow-Level Centers”).

  4. 4.

    The term phosphor should not be confused with the chemical element phosphorus, which emits a faint glow when exposed to oxygen. This property is related to its Greek name Φωσφόρος, meaning light bearer, which also lead to the term phosphorescence to describe a glow after illumination, and the general term phosphor for fluorescent materials.

  5. 5.

    In contrast to the vacuum diode, the current in a semiconductor is bidirectional, hence the factor 2.

References

  • Agrawal GP, Dutta NK (1993) Semiconductor lasers. Springer, Kluwer Academic Publishers, Boston

    Google Scholar 

  • Ambrozy A (1982) Electronic noise. McGraw-Hill Book Co, New York

    Google Scholar 

  • Ascarelli G, Rodriguez S (1961) Recombination of electrons and donors in n-type germanium. Phys Rev 124:1321

    Article  ADS  Google Scholar 

  • Bakker CJ, Heller G (1939) On the Brownian motion in electric resistances. Physica 6:262

    Article  ADS  MATH  Google Scholar 

  • Balandin A, Wang KL, Svizhenko A, Bandyopadhyay S (1999) The fundamental 1/f noise and the Hooge parameter in semiconductor quantum wires. IEEE Trans Electron Dev 46:1240

    Article  ADS  Google Scholar 

  • Barber HD (1967) Effective mass and intrinsic concentration in silicon. Solid State Electron 10:1039

    Article  ADS  Google Scholar 

  • Bartram RH, Stoneham AM (1975) On the luminescence and absence of luminescence of F centers. Sol State Commun 17:1593

    Article  ADS  Google Scholar 

  • Beattie AR, Landsberg PT (1959) Auger effect in semiconductors. Proc Roy Soc A 249:16

    ADS  Google Scholar 

  • Benoit a la Guillaume C, Lavallard P (1972) Piezoemission of GaSb: impurities and bound excitons. Phys Rev B 5:4900

    Google Scholar 

  • Berntgen J, Heime K, Daumann W, Auer U, Tegude F-J, Matulionis A (1999) The 1/f noise of InP based 2DEG devices and its dependence on mobility. IEEE Trans Electron Dev 46:194

    Article  ADS  Google Scholar 

  • Bittel H (1959) Schwankungserscheinungen bei der Elektrizitätsleitung in Festkörpern. Erg exakt Naturwiss 31:84 (Fluctuation phenomena in the electrical conduction of solids, in German)

    Google Scholar 

  • Blasse G, Grabmayer BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  • Böer KW, Junge K (1953) Zur Frequenzabhängigkeit von Elektronenschwankungserscheinungen in Halbleitern. Z Naturforsch 8a:753 (On the frequency dependence of electron fluctuation phenomena in semiconductors, in German)

    Google Scholar 

  • Bosman G (1981). PhD Thesis, University of Utrecht, Netherlands

    Google Scholar 

  • Bube RH (1974) Electronic properties of crystalline solids. Academic Press, New York

    Google Scholar 

  • Bubenzer A, Hunklinger S, Dransfeld K (1980) New method for measuring extremely low optical absorptions. J Non-Cryst Sol 40:605

    Article  ADS  Google Scholar 

  • Cantow H-J et al (eds) (1981) Advances in polymer science, vol 40. Springer, Berlin

    Google Scholar 

  • Çeik-Butler Z (1996) 1/ƒ noise as an electromigration characterization tool for W-plug vias between TiN/Al-Cu/TiN metallizations. Solid State Electron 39:999

    Article  ADS  Google Scholar 

  • Chow WW, Koch SW, Sargent M (1997) Semiconductor laser physics. Springer, Berlin/New York

    Google Scholar 

  • Coleman JJ, Bryce C, Jagadish C (eds) (2012) Advances in semiconductor lasers. Semiconductors and semimetals, vol 86. Academic Press, San Diego

    Google Scholar 

  • Curie D (1963) Luminescence in crystals. Wiley, New York

    Google Scholar 

  • Dean PJ (1984) Collective excitation in solids. Plenum Press, New York

    Google Scholar 

  • Dean PJ, Cuthbert JD, Lynch RT (1969) Interimpurity recombinations involving the isoelectronic trap bismuth in gallium phosphide. Phys Rev 179:754

    Article  ADS  Google Scholar 

  • Dexter DL, Klick CC, Russell GA (1956) Criterion for the occurrence of luminescence. Phys Rev 100:603

    Article  ADS  Google Scholar 

  • Dutta P, Horn PM (1981) Low-frequency fluctuations in solids: 1/f noise. Rev Mod Phys 53:497

    Article  ADS  Google Scholar 

  • Dziewior J, Schmid W (1977) Auger coefficients for highly doped and highly excited silicon. Appl Phys Lett 31:346

    Article  ADS  Google Scholar 

  • Etienne B (1975) Thesis. L’Ecole Normale Superieure, Paris

    Google Scholar 

  • Gisolf JH (1949) On the spontaneous current fluctuations in semiconductors. Physica 15:825

    Article  ADS  MATH  Google Scholar 

  • Goldberg PG (ed) (1966) Luminescence of inorganic solids. Academic Press, New York

    Google Scholar 

  • González T, Mateos J, Pardo D, Bulashenko OM, Reggiani L (1998) Microscopic analysis of shot-noise suppression in nondegenerate ballistic transport. Semicond Sci Technol 13:714

    Article  ADS  Google Scholar 

  • González T, Mateos J, Pardo D, Reggiani L (1999) Joint effect of Fermi and Coulomb correlations on shot-noise suppression in ballistic conductors. Physica B 272:285

    Article  ADS  Google Scholar 

  • Grabert H, Devoret MH (eds) (1992) Single charge tunneling. Coulomb blockade in nanostructures. Plenum Press, New York

    Google Scholar 

  • Gruhl H, Dorn H-P, Winzer K (1985) Calorimetric absorption spectroscopy of J-aggregate dye monolayers below 0.1 Kelvin. Appl Phys B 38:199

    Article  ADS  Google Scholar 

  • Gutsche E (1982) Non-Condon approximations and the static approach in the theory of non-radiative multiphonon transitions. Phys Stat Sol B 109:583

    Article  ADS  Google Scholar 

  • Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent light emission from GaAs junctions. Phys Rev Lett 9:366

    Article  ADS  Google Scholar 

  • Handel PH (1980) Quantum approach to 1/f noise. Phys Rev A 22:745

    Article  ADS  Google Scholar 

  • Handel PH (1982) Characteristic functional of quantum 1/f noise. Phys Rev A 26:3727

    Article  ADS  Google Scholar 

  • Handel PH (1994) Fundamental quantum 1/f noise in semiconductor devices. IEEE Trans Electron Devices 41:2023

    Article  ADS  Google Scholar 

  • Handel PH (1996) Coherent and conventional quantum 1/f effect. Phys Stat Sol B 194:393

    Article  ADS  Google Scholar 

  • Haug A (1972) Theoretical solid state physics. Pergamon Press, Oxford

    Google Scholar 

  • Haug A (1980) Auger recombination with traps. Phys Stat Sol B 97:481

    Article  ADS  Google Scholar 

  • Haug A (1981) Auger recombination with deep impurities in indirect bandgap semiconductors. Phys Stat Sol B 108:443

    Article  ADS  Google Scholar 

  • Haug A (1988) Band-to-band Auger recombination in semiconductors. J Phys Chem Sol 49:599

    Article  ADS  Google Scholar 

  • Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. John Wiley, New York

    Google Scholar 

  • Haynes JR, Hornbeck JA (1955) Trapping of minority carriers in silicon. II. n-type silicon. Phys Rev 100:606

    Article  ADS  Google Scholar 

  • Haynes JR, Nilsson NG (1965) Recombination radiation in semiconductors. Proceedings of the 7th symposium on radiative recombination, Paris 1964. Dunod, Paris, pp 21–31

    Google Scholar 

  • Heitz R, Podlowski L, Böhrer J, Hoffmann A, Broser I, Bimberg D (1995) Calorimetric absorption spectroscopy of deep defects and quantum dots. Acta Physica Polonica A 88:619

    Article  Google Scholar 

  • Hensel JC, Phillips TG, Thomas GA (1978) The electron–hole liquid in semiconductors: experimental aspects. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid State Phys 32. Academic Press, New York, pp 87–314

    Google Scholar 

  • Henry CH, Lang DV (1977) Nonradiative capture and recombination by multiphonon emission in GaAs and GaP. Phys Rev B 15:989

    Article  ADS  Google Scholar 

  • Hooge FN (1969) 1/f noise is no surface effect. Phys Lett A 29:139

    Article  ADS  Google Scholar 

  • Hooge FN, Kleinpenning TGM, Vandamme LKJ (1981) Experimental studies on 1/f noise. Rep Prog Phys 44:479

    Article  ADS  Google Scholar 

  • Iveland J, Martinelli L, Peretti J, Speck JS, Weisbuch C (2013) Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys Rev Lett 110:177406

    Article  ADS  Google Scholar 

  • Johnson JB (1925) The Schottky effect in low frequency circuits. Phys Rev 26:71

    Article  ADS  Google Scholar 

  • Juhl A, Bimberg D (1988) Calorimetric absorption and transmission spectroscopy for determination of quantum efficiencies and characterization of ultrathin layers and non radiative centers. J Appl Phys 64:303

    Article  ADS  Google Scholar 

  • Kalt H (1994) The electron–hole plasma and liquid in confined semiconductor systems. J Lumin 60:262

    Article  Google Scholar 

  • Kapon E (1999) Semiconductor lasers, fundamentals. Academic Press, San Diego

    Google Scholar 

  • Kayanuma Y, Fukuchi S (1984) Nonradiative transitions in deep impurities in semiconductors – study in a semiclassical model. J Phys Soc Jpn 53:1869

    Article  ADS  Google Scholar 

  • Kilmer J, Chenette EK, van Vliet CM, Handel PH (1982) Absence of temperature fluctuations in 1/f noise correlation experiments in silicon. Phys Stat Sol A 70:287

    Article  ADS  Google Scholar 

  • Knox RS (1963) Theory of excitons. Solid State Phys Suppl 5. Academic Press, New York

    Google Scholar 

  • Kogan SM (1996) Electronic noise and fluctuations in solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Korotov AN (1994) Intrinsic noise of the single-electron transistor. Phys Rev B 49:10381

    Article  ADS  Google Scholar 

  • Kousik GS, van Vliet CM, Bosman G, Handel PH (1985) Quantum 1/f noise associated with ionized impurity scattering and electron-phonon scattering in condensed matter. Adv Phys 34:663

    Article  ADS  Google Scholar 

  • Kousik GS, van Vliet CM, Bosman G, Luo H-J (1989) Quantum 1/f noise associated with intervalley scattering in nondegenerate semiconductors. I. Analytical calculations. Phys Stat Sol B 154:713

    Article  ADS  Google Scholar 

  • Laks DB, Neumark GF, Hangleiter A, Pantelides ST (1988) Theory of interband Auger recombination in n-type silicon. Phys Rev Lett 61:1229

    Article  ADS  Google Scholar 

  • Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450

    Article  ADS  Google Scholar 

  • Landsberg PT (1987) The band-band Auger effect in semiconductors. Solid State Electron 30:1107

    Article  ADS  Google Scholar 

  • Landsberg PT, Pimpale A (1976) Recombination-induced non-equilibrium phase transitions in semiconductors. J Phys C 9:1243

    Article  ADS  Google Scholar 

  • Landsberg PT, Willoughby AF (eds) (1978) Recombination in semiconductors. Solid State Electron 21

    Google Scholar 

  • Levitov LS, Lesovik GB (1993) Charge distribution in quantum shot noise. JETP Lett 58:230

    ADS  Google Scholar 

  • Li YP, Tsui DC, Heremans JJ, Simmons JA, Weimann GW (1990) Low-frequency noise in transport through quantum point contacts. Appl Phys Lett 57:774

    Article  ADS  Google Scholar 

  • Liefrink F, Scholten AJ, Dekker C, Eppenga R, van Houten H, Foxon CT (1991) Low-frequency noise of quantum point contacts in the ballistic and quantum Hall regime. Physica B 175:213

    Article  ADS  Google Scholar 

  • Lochmann W, Haug A (1980) Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals. Sol State Commun 35:553

    Article  ADS  Google Scholar 

  • Maiman TH (1960) Optical and microwave-optical experiments in ruby. Phys Rev Lett 4:564

    Article  ADS  Google Scholar 

  • Malvezzi AM (1987) Interaction of picosecond laser pulses with solid surfaces. Proc SPIE 793:49

    Article  ADS  Google Scholar 

  • McWorther AL (1955) 1/f noise and related surface effects in germanium. Lincoln lab report No 80, Boston

    Google Scholar 

  • Mott NF (1974) Metal-insulator transitions. Barnes and Noble, New York

    Google Scholar 

  • Nakamura A, Weisbuch C (1978) Resonant Raman scattering versus hot electron effects in excitation spectra of CdTe. Solid State Electron 21:1331

    Article  ADS  Google Scholar 

  • Nathan MI, Dumke WP, Burns G, Dill FH Jr, Lasher G (1962) Stimulated emission of radiation from GaAs p-n junctions. Appl Phys Lett 1:62

    Article  ADS  Google Scholar 

  • Nicolet MA, Bilger HR, Zijlstra RJJ (1975) Noise in single and double injection currents in solids (I). Phys Stat Sol B 70:9. And: Noise in single and double injection currents in solids (II). Phys Stat Sol B 70:415

    Google Scholar 

  • Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110

    Article  ADS  Google Scholar 

  • Pellegrini B (1986) On mobility-fluctuation origin of 1/ƒ noise. Solid State Electron 29:1279

    Article  ADS  Google Scholar 

  • Peuker K, Enderlein R, Schenk A, Gutsche E (1982) Theory of non-radiative multiphonon capture processes. Solution of old controversies. Phys Stat Sol B 109:599

    Article  ADS  Google Scholar 

  • Quist TM, Rediker RH, Keyes RJ, Krag WE, Lax B, McWhorter AL, Zeigler HJ (1962) Semiconductor maser of GaAs. Appl Phys Lett 1:91

    Article  ADS  Google Scholar 

  • Reinecke TL (1982) Electron–hole liquid condensation in semiconductors. In: Devreese JT, Peeters F (eds) Polarons and excitons in polar semiconductors and ionic crystals. Plenum Press, New York, pp 343–382

    Google Scholar 

  • Rice TM (1977) The electron–hole liquid in semiconductors: theoretical aspects. In: Ehrenreich H, Seitz F, Turnbull D (eds) Solid State Phys 32. Academic Press, New York, pp 1–86

    Google Scholar 

  • Reynolds DC (1960) Temperature dependence of edge emission in cadmium sulfide. Phys Rev 118:478

    Article  ADS  Google Scholar 

  • Reynolds DC, Bajaj KK, Litton CW (1985) Study of shallow impurity states in compound semiconductors using high resolution photoluminescence spectroscopy. Solid State Commun 53:1061

    Article  ADS  Google Scholar 

  • Reznikov M, de Picciotto R, Heiblum M, Glattli DC, Kumar A, Saminadayar L (1998) Quantum shot noise. Superlattices Microstruct 23:901

    Article  ADS  Google Scholar 

  • Robbins DJ, Landsberg PT (1980) Impact ionisation and Auger recombination involving traps in semiconductors. J Phys C 13:2425

    Article  ADS  Google Scholar 

  • Ronda C (2008) Luminescence. Wiley-VCH, Weinheim

    Google Scholar 

  • Rose A (1951) Concepts in photoconductivity and allied problems. RCA Rev 12:362

    Google Scholar 

  • Rostworowski JA, Bergersen B (1978) Phonon replicas of the electron-hole liquid luminescence in intrinsic silicon. Solid State Commun 28:919

    Article  ADS  Google Scholar 

  • Schottky W (1918) Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern. Ann Phys (Lpz) 57:541 (Regarding spontaneous current fluctuation in different electricity conductors, in German)

    Google Scholar 

  • Shah J (1974) Distribution function of photoexcited carriers in highly excited GaAs. Phys Rev B 10:3697

    Article  ADS  Google Scholar 

  • Shah J (1978) Hot electrons and phonons under high intensity photoexcitation of semiconductors. Solid State Electron 21:43

    Article  ADS  Google Scholar 

  • Shah J, Leite RCC (1969) Radiative recombination from photoexcited hot carriers in GaAs. Phys Rev Lett 22:1304

    Article  ADS  Google Scholar 

  • Shah J, Combescot M, Dayem AH (1977) Investigation of exciton-plasma Mott transition in Si. Phys Rev Lett 38:1497

    Article  ADS  Google Scholar 

  • Sherif TS, Handel PH (1982) Unified treatment of diffraction and 1/f noise. Phys Rev A 26:596

    Article  ADS  Google Scholar 

  • Shionoya S (1991) A review of wide bandgap II-VI compounds. Mater Forum 15:132

    Google Scholar 

  • Shockley W, Read WT Jr (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835

    Article  ADS  MATH  Google Scholar 

  • Stierwalt DL, Potter RF (1967) Emittance studies. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, pp 71–90

    Google Scholar 

  • Sumi H (1983) Nonradiative multiphonon capture of free carriers by deep-level defects in semiconductors: adiabatic and nonadiabatic limits. Phys Rev B 27:2374

    Article  ADS  Google Scholar 

  • Tacano M (1993) Hooge fluctuation parameter of semiconductor microstructures. IEEE Trans Electron Devices 40:2060

    Article  ADS  Google Scholar 

  • Thomas DG, Hopfield JJ, Frosch CJ (1965) Isoelectronic traps due to nitrogen in gallium phosphide. Phys Rev Lett 15:857

    Article  ADS  Google Scholar 

  • Trumbore FA, Gershenzon M, Thomas DG (1966) Luminescence due to the isoelectronic substitution of bismuth for phosphorus in gallium phosphide. Appl Phys Lett 9:4

    Article  ADS  Google Scholar 

  • Ulmer EA, Frankl DR (1968) Infrared emission from free carriers in germanium. Proceedings of the 9th international conference on the physics of semiconductors. Nauka, Moscow, pp 170–174

    Google Scholar 

  • van der Ziel A (1950) On the noise spectra of semi-conductor noise and of flicker effect. Physica 16:359

    Article  ADS  Google Scholar 

  • van der Ziel A (1970) Noise: Sources, characterization, measurement. Prentice Hall Inc, Englewood Cliffs

    Google Scholar 

  • van der Ziel A (1986) Noise in solid state devices and circuits. John Wiley & Sons, New York

    Google Scholar 

  • van der Ziel A (1988) Unified presentation of 1/f noise in electron devices: fundamental 1/f noise sources. Proc IEEE 76:233

    Article  Google Scholar 

  • van der Ziel A, Handel PM (1985) 1/f noise in n+-p diodes. IEEE Trans Electron Devices ED-32:1802

    Article  ADS  Google Scholar 

  • van Kampen NG (1992) Stochastic processes in physics and chemistry. North Holland Publishing, Amsterdam

    MATH  Google Scholar 

  • van Roosbroeck W, Shockley W (1954) Photon-radiative recombination of electrons and holes in germanium. Phys Rev 94:1558

    Article  ADS  Google Scholar 

  • van Vliet KM (1958) Irreversible thermodynamics and carrier density fluctuations in semiconductors. Phys Rev 110:50

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • van Vliet KM (1990) Quantum electrodynamical theory of infrared effects in condensed matter: II. Radiative corrections of cross sections and scattering rates and quantum 1/f noise. Physica A 165:126

    Article  ADS  Google Scholar 

  • van Vliet KM, Mehta H (1981) Theory of transport noise in semiconductors. Phys Stat Sol B 106:11

    Article  ADS  Google Scholar 

  • van Vliet KM, van der Ziel A (1958) On the noise generated by diffusion mechanisms. Physica 24:415

    Article  ADS  MATH  Google Scholar 

  • Voos M, Leheny RF, Shah J (1980) Radiative recombination. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, Optical properties of solids, vol 2. North Holland Publishing Company, Amsterdam, pp 329–416

    Google Scholar 

  • Voss RF, Clarke J (1976) Flicker (1/f) noise: equilibrium temperature and resistance fluctuations. Phys Rev B 13:556

    Article  ADS  Google Scholar 

  • Varshni YP (1967) Band-to-band radiative recombination in groups IV, VI, and III-V semiconductors (I). Phys Stat Sol B 19:459; (II) Phys Stat Sol B 20:9

    Google Scholar 

  • Wagner J (1985) Heavily doped silicon studied by luminescence and selective absorption. Solid State Electron 28:25

    Article  ADS  Google Scholar 

  • Weisbuch C, Ulbrich RG (1978) Resonant interactions of LA-phonons with excitonic polaritons in GaAs. In: Balkanski M (ed) Proceedings of the international conference on lattice dynamics. Flammarion Sciences, Paris, pp 167–169

    Google Scholar 

  • William EW, Hall R (1978) Luminescence and the light emitting diode. Pergamon Press, New York

    Google Scholar 

  • Yariv A (1975) Quantum electronics, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Böer, K.W., Pohl, U.W. (2020). Carrier Recombination and Noise. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_30-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_30-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Carrier Recombination and Noise
    Published:
    11 August 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_30-4

  2. Carrier Recombination and Noise
    Published:
    02 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_30-3

  3. Carrier Recombination and Noise
    Published:
    27 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_30-2

  4. Original

    Carrier Recombination and Noise
    Published:
    12 April 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_30-1