Skip to main content

Lunar Crater Ejecta

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson JLB, Schultz PH, Heineck JT (2003) Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. J Geophys Res 108. doi:10.1029/2003JE002075

  • Atwood-Stone C, Bray VJ, McEwen AS (2016) A new study of crater concentric ridges on the moon. Icarus 273:196–204. http://dx.doi.org/10.1016/j.icarus.2016.03.012. ISSN 0019-1035

    Article  ADS  Google Scholar 

  • Bell JF, Hawke BR (1984) Lunar dark-haloed impact craters: origins and implications for early Mare volcanism. J Geophys Res 89(B8):6899–6910

    Article  ADS  Google Scholar 

  • Bray VJ, Tornabene LL, Keszthelyi LP, McEwen AS, Hawke BR, Giguere TA, Kattenhorn SA, Garry WB, Rizk B, Caudill CM, Gaddis LR, van der Bogert CH (2010) New insight into lunar impact melt mobility from the LRO camera. Geophys Res Lett 37. https://doi.org/10.1029/2010GL04466610.1029/2010GL044666

  • Chapman CR, McKinnon WB (1986) Cratering of planetary satellites. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 492–580

    Google Scholar 

  • Cintala MJ, Berthoud L, Horz F (1999) Ejection-velocity distributions from impacts into coarse-grained sand. Meteorit Planet Sci 34:605–623

    Article  ADS  Google Scholar 

  • Dence MR (1968) Shock zoning at Canadian craters: petrography and structural implications. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp., Baltimore, pp 169–184

    Google Scholar 

  • Denevi BW et al (2012) Physical constraints on impact melt properties from lunar reconnaissance orbiter camera images. Icarus 219(2):665–675

    Article  ADS  Google Scholar 

  • El-Baz F (1972) King crater and its environs. In: Apollo 16 preliminary science report, NASA spec. publ., NASA SP-315, 29-62–29-70

    Google Scholar 

  • French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI contribution no. 954. Lunar and Planetary Institute, Houston, p 120

    Google Scholar 

  • Gault DE, Wedekind JA (1978) Experimental studies of oblique impacts. Proc Lunar Planet Sci Conf 9:3843–3875

    ADS  Google Scholar 

  • Ghent RR, Gupta V, Campbell BA, Ferguson SA, Brown JCW, Fergason RL, Carter LM (2010) Generation and emplacement of fine-grained ejecta in planetary impacts. Icarus 209:818–835

    Article  ADS  Google Scholar 

  • Ghent RR, Carter LM, Bandfield JL, Tai Udovicic CJ, Campbell BA (2016) Lunar crater ejecta: physical properties revealed by radar and thermal infrared observations. Icarus 273:182–195. http://dx.doi.org/10.1016/j.icarus.2015.12.014. ISSN 0019-1035

    Article  ADS  Google Scholar 

  • Hawke BR, Head JW(1977) Impact melt on lunar crater rims. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, pp 815–841

    Google Scholar 

  • Hawke BR, Blewett DT, Lucey PG, Peterson CA, Bell JF, Campbell BA, Robinson MS (1999) The composition and origin of selected lunar crater rays workshop on new views of the moon II: Understanding the moon through the integration of diverse datasets, 8035

    Google Scholar 

  • Hawke BR, Blewett DT, Lucey PG, Smith GA, Bell JF III, Campbell BA, Robinson MS (2004) The origin of lunar crater rays. Icarus 170(1):1–16. dx.doi.org/10.1016/j.icarus.2004.02.013. ISSN 0019-1035

    Article  ADS  Google Scholar 

  • Heiken GH, Vaniman DT, French BM, (1991) Lunar Sourcebook: A User’s Guide to the Moon; Cambridge University Press, London, UK

    Google Scholar 

  • Hiesinger H, Head JW New views of lunar geoscience: an introduction and overview. Rev Mineral Geochem 60(1):1–81. https://doi.org/10.2138/rmg.2006.60.1

  • Housen KR, Holsapple KA (2011) Ejecta from impact craters. Icarus 211:856–875

    Article  ADS  Google Scholar 

  • Howard KA (1974) Fresh lunar impact craters: review of variations with size. In: Lunar science conference, 5th, Houston, 18–22 March 1974, Proceedings, vol 1 (A75–39540 19–91). Pergamon Press, New York, pp 61–69. NASA-supported research

    Google Scholar 

  • Howard KA, Wilshire HG (1975) Flows of impact melt at lunar craters. J Res US Geol Surv 3(2):237–251

    Google Scholar 

  • Krüger T, van der Bogert CH, Hiesinger H (2016) Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits. Icarus 273:164–181. http://dx.doi.org/10.1016/j.icarus.2016.02.018. ISSN 0019-1035

    Article  ADS  Google Scholar 

  • McEwen AS, Gaddis LR, Neukum G, Hoffman H, Pieters CM, Head JW (1993) Galileo observations of post-Imbrium craters during the first earth–moon flyby. J Geophys Res 98(1993):17207–17231

    Article  ADS  Google Scholar 

  • McGetchin TR, Settle M, Head W (1973) Radial thickness variation in impact crater ejecta: implication for lunar basin deposits, earth planet. Sci Lett 20:226–236

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic perspective. Oxford Univ. Press, New York, pp 245

    Google Scholar 

  • Neish CD, Madden J, Carter LM, Hawke BR, Giguere T, Bray VJ, Osinski GR, Cahill JTS (2014) Global distribution of lunar impact melt flows. Icarus 239:105–117. http://dx.doi.org/10.1016/j.icarus.2014.05.049. ISSN 0019-1035

    Article  ADS  Google Scholar 

  • Oberbeck VR (1971) A mechanism for the production of lunar crater rays. Moon 2:263–278

    Article  ADS  Google Scholar 

  • Oberbeck VR (1975) The role of ballistic erosion and sedimentation in lunar stratigraphy. Rev Geophys 13:337–362

    Article  ADS  Google Scholar 

  • Oberbeck VR, Morrison RH (1973) On the formation of the lunar herringbone pattern. In: Proceedings of the lunar science conference, vol 4, p 107

    Google Scholar 

  • Öhman T, Kramer GY, Kring DA (2014) Characterization of melt and ejecta deposits of Kepler crater from remote sensing data. J Geophys Res Planets 119:1238–1258. https://doi.org/10.1002/2013JE004501

    Article  ADS  Google Scholar 

  • Osinski GR, Tornabene LL, Grieve RAF (2011) Impact ejecta emplacement on terrestrial planets. Earth Planet Sci Lett 310(3–4):167–181. http://dx.doi.org/10.1016/j.epsl.2011.08.012. ISSN 0012-821X

    Article  ADS  Google Scholar 

  • Pike RJ (1977) Size-dependence in the shape of fresh impact craters on the moon. Paper presented at the symposium on planetary cratering mechanics, Flagstaff, 13–17 Sept 1976

    Google Scholar 

  • Plescia JB, Cintala MJ (2012) Impact melt in small lunar highland craters. J Geophys Res 117:E00H12. doi:10.1029/2011je003941

    Article  Google Scholar 

  • Poelchau MH, Kenkmann T, Kring DA (2009) Rim uplift and crater shape in meteor crater: the effects of target heterogeneities and trajectory obliquity. J Geophys Res 114:E01006. https://doi.org/10.1029/2008JE003235

    Article  ADS  Google Scholar 

  • Richardson JE, Melosh HJ, Lisse CM, Carcich B (2007) A ballistics analysis of the deep impact ejecta plume: determining comet Tempel 1’s gravity, mass, and density. Icarus 190:357–390

    Article  ADS  Google Scholar 

  • Robinson MS, 22 coauthors (2010) Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci Rev 150:81–124. doi:10.1007/s11214-010- 9634-2

  • Roddy DJ, Pepin RO, Merrill RB (1977) Impact and explosion cratering: planetary and terrestrial implications; proceedings of the symposium on planetary cratering mechanics. Pergamon Press, New York. 1315 p

    Google Scholar 

  • Schultz PH (1976) Moon morphology. University of Texas Press, Austin

    Google Scholar 

  • Sharpton VL (2014) Outcrops on lunar crater rims: implications for rim construction mechanisms, ejecta volumes and excavation depths. J Geophys Res Planets 119:154–168. doi:10.1002/2013JE004523

    Article  ADS  Google Scholar 

  • Shoemaker EM (1963) Interpretation of lunar craters. In: Kopal Z (ed) Physics and astronomy of the Moon. Academic Press, pp 283–359

    Google Scholar 

  • Shoemaker EM (1970) Origin of fragmental debris on the lunar surface and history of bombardment of the Moon. Presentation at I Seminario de Geologia Lunar, University of Barcelona (Rev. January 1971)

    Google Scholar 

  • Singer KN, McKinnon WB, Nowicki LT (2013) Secondary craters from large impacts on Europa and Ganymede: Ejecta size–velocity distributions on icy worlds, and the scaling of ejected blocks. Icarus 226(1):865–884. https://doi.org/10.1016/j.icarus.2013.06.034. ISSN 0019–1035

    Google Scholar 

  • Vickery AM (1986) Size-velocity distribution of large ejecta fragments. Icarus 67:224–236

    Article  ADS  Google Scholar 

  • Wilhelms DE (1987) The geologic history of the moon. USGS Prof. Paper 1348, United States Geological Survey, Flagstaff, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zanetti .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Zanetti, M. (2017). Lunar Crater Ejecta. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics