Skip to main content

Storage Ring Design for Synchrotron Radiation Sources

  • Reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Abstract

Modern storage ring light sources have been very successful in providing high-flux, high-brightness, highly stable photon beams for many scientific applications. Their success is underpinned by sophisticated lattice designs that allow small emittance electron beams to be reached with a large complement of straight sections for insertion devices. The design of such lattices is in continuous evolution, with the most modern trends aiming at diffraction-limited storage rings.

In this chapter we review the users’ requirements and their implications on the storage ring design strategies. The rationale of the design based on double-bend achromats (DBA) and triple-bend achromats (TBA) isare presented along with the most recent solutions based on multi-bend achromats (MBA) and damping wigglers. The strategies for the optimizsation of the linear and nonlinear optics are discussed. We conclude with a review of the injection schemes, including nonlinear pulsed kicker injection and the implications of top-up operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978)

    Book  Google Scholar 

  • A. Andersson et al., Determination of a small vertical electron beam profile and emittance at the Swiss light source. Nucl. Instrum. Methods A591, 437 (2008)

    Article  ADS  Google Scholar 

  • A. Aitkinson et al., Development of a nonlinear kicker system to facilitate a new injection scheme for the BESSY II storage ring, in Proceedings of the IPAC11, San Sebastian, 2011, p. 3394

    Google Scholar 

  • J. Bengtsson, The sextupole scheme for the Swiss Light Source (SLS): an analytical approach. SLS Note 9/97 (1997)

    Google Scholar 

  • K. Bane, A simplified model of intrabeam scattering, in Proceedings of the EPAC02, Paris, 2002, p. 1443

    Google Scholar 

  • K. Balweski et al., PETRA III upgrade, in Proceedings of the IPAC11, San Sebastian, 2011, p. 2948

    Google Scholar 

  • R. Bartolini, The commissioning of the diamond storage ring, in Proceedings of the PAC07, Albuquerque, 2007, p. 1109

    Google Scholar 

  • R. Bartolini et al., Correction of multiple nonlinear resonances in storage rings. PRSTAB 11, 104002 (2008)

    Google Scholar 

  • R. Bartolini et al., Calibration of the nonlinear ring model at the diamond light source. PRSTAB 14, 054003 (2011)

    Google Scholar 

  • M. Borland, Elegant: a flexible SDDS-compliant code for accelerator simulations. APS, LS-287, 2000

    Google Scholar 

  • M. Borland, Exploration of a Tevatron-sized ultimate storage ring, in Proceedings of the IPAC12, New Orleans, 2012, p. 1683

    Google Scholar 

  • M. Borland et al., Hybrid seven bend achromat lattice for the advanced photon source upgrade, in Proceedings of the IPAC’15, Richmond, 2015, to appear

    Google Scholar 

  • H. Bruck, Accelerateurs Circulaires de Particules (Presses Universitaires de France, 1966), Paris

    Google Scholar 

  • J. Byrd, M. Georgsson, Lifetime increase using passive harmonic cavities in synchrotron light sources. PRSTAB 4, 030701 (2001)

    Google Scholar 

  • Y. Cai et al., Ultimate storage ring based on fourth order geometric achromats. PRSTAB 15, 054002 (2012)

    Google Scholar 

  • R. Chasman, G.K. Green, Preliminary design of a dedicated synchrotron radiation facility. IEEE Trans. Nucl. Sci. NS22, 1765 (1975)

    Google Scholar 

  • J. Chavanne, G. Le Bec, Prospects for the use of permanent magnets in future accelerator facilities, in Proceedings of the IPAC14, Dresden, 2014, p. 968

    Google Scholar 

  • R. Dowd et al., Vertical emittance at the quantum limit, in Proceedings of the IPAC14, Dresden, 2014, p. 1096

    Google Scholar 

  • P. Elleaume, in Undulators, Wigglers and their Applications, ed. by H. Onuki, P. Elleaume (Taylor and Francis, London/New York, 2003), p. 79

    Google Scholar 

  • D. Einfeld, Synchrotron light sources, status and new projects, in Brilliant Light in Material Science, ed. by V. Tsakanov, H. Wiedeman (Springer, Dordrecht/London, 2007)

    Google Scholar 

  • D. Einfeld et al., Design of a diffraction limited light source, in Proceedings of the PAC95, Dallas, 1995, p. 177

    Google Scholar 

  • M. Eriksson et al., MAX IV design: pushing the envelope, in Proceedings of the PAC07, Albuquerque, 2007, p. 74

    Google Scholar 

  • ESRF upgrade programme Phase II design (2015–2022) (Orange Book), http://www.esrf.eu/ Apache_files/Upgrade/ESRF-orange-book.pdf. ESRF Dec 2014

  • A. Fanouria, Y. Papaphilippou, Lattice design for intrabeam dominated low emittance rings presented at the 1st, in Low Emittance Ring Lattice workshop, Barcelona, April 2015. http://indico.cern.ch/event/370770/session/4/contribution/26/attachments/737616/1011999/IBS- Barcelona2015.pdf

  • A. Franchi et al., Vertical emittance reduction and preservation in electron storage rings via resonance driving terms correction. PRSTAB 14, 034002 (2011)

    Google Scholar 

  • G. Geloni et al., Transverse coherence properties of X-ray beams in third generation synchrotron radiation sources. Nucl. Instrum. Methods A588, 463 (2008)

    Article  ADS  Google Scholar 

  • M. Giovannozzi et al., Prediction of long term stability in large hadron colliders. Part. Acc. 56, 195 (1997)

    Google Scholar 

  • S. Guiducci, Damping rings towards ultra low emittances, in Proceedings of the EPAC06, Edinburgh, 2006, p. 1857

    Google Scholar 

  • W. Guo, Emittance reduction approaches for the NSLS-II, in Proceedings of the IPAC12, New Orleans, 2012, p. 2363

    Google Scholar 

  • J. Guo, T. Raubenheimer, Low emittance e+e storage rings using bending magnets with longitudinal gradient, in EPAC02, Berkeley, 2002, p. 1136

    Google Scholar 

  • K. Harada et al., New injection scheme using a pulsed quadrupole magnet in electron storage rings. PRSTAB 10, 123501 (2007)

    Google Scholar 

  • R. Hettel et al., Lattice design for the Pep-X ultimate storage ring light source, in Proceedings of the IPAC11, San Sebastian, 2011, p. 3068

    Google Scholar 

  • X. Huang et al., Study of lower emittance lattices for SPEAR3, in Proceedings of the IPAC11, San Sebastian, 2011, p. 3062

    Google Scholar 

  • S. Khan, Simulation of the Touschek effect for Bessy-II. A Montecarlo approach, in Proceedings of the EPAC04, Lucerne, 1994, p. 1192

    Google Scholar 

  • K.J. Kim, Characteristics of synchrotron radiation, in AIP Conference Proceedings, N. 184 (AIP, New York, 1989), p. 565

    Google Scholar 

  • J. Laskar et al., The measure of chaos by the numerical analysis of fundamental frequencies. Phys. D 67, 253 (1992)

    Article  MathSciNet  Google Scholar 

  • S.Y. Lee, Emittance optimisation in three and multiple bend achromats. Phys. Rev. E 54, 1940 (1996)

    Google Scholar 

  • S.Y. Lee, Accelerator Physics, 2nd edn. (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  • S. Leemann, Beam dynamics and expected performance of Swedens new storage ring light source: MAX IV. Phys. Rev. STAB 12, 120701 (2009)

    ADS  Google Scholar 

  • S. Leemann, Pulsed sextupole injection for Sweden’s new light source MAX IV. Phys. Rev. STAB 15, 050705 (2012)

    ADS  Google Scholar 

  • S. Leemann, A. Streun, Perspectives for future light sources lattices incorporating yet uncommon magnets. Phys. Rev. STAB 14, 030701 (2011)

    ADS  Google Scholar 

  • Max IV Conceptual Design Report, 2010, https://www.maxlab.lu.se/sites/default/files/MAX-IV- CDR_0.pdf

  • MAD – Methodical Accelerator Design, 2015 http://madx.web.cern.ch/madx/

  • A. Nadji et al., Commissioning of the SOLEIL synchrotron radiation source, in Proceedings of the PAC07, Albuquerque, 2007, p. 932

    Google Scholar 

  • L. Nadolski et al., SOLEIL emittance reduction using a Robinson wiggler, in Proceedings of the IPAC12, New Orleans, 2012, p. 702

    Google Scholar 

  • R. Nagaoka, A. Wrulich, Emittance minimisation with longitudinal dipole field variation. NIM A575, 292 (2007)

    Article  ADS  Google Scholar 

  • K. Oide, H. Koiso, Dynamic aperture of electron storage rings with non-interleaved sextupoles. Phys. Rev. E 47, 2010 (1993)

    Google Scholar 

  • J. Revol et al., ESRF upgrade phase II status, in Proceedings of the IPAC14, Dresden, 2014, p. 209

    Google Scholar 

  • D.S. Robin et al., Exploring the limits of the ALS triple bend lattice, in Proceedings of the PAC07, Albuquerque, 2007, p. 1188

    Google Scholar 

  • K.W. Robinson, Radiation effects in circular accelerator. Phys. Rev. 111, 373 (1958)

    Article  ADS  Google Scholar 

  • M. Sands, The Physics of Electron Storage Rings: An Introduction, vol. R-121 (SLAC, Stanford, 1970)

    Book  Google Scholar 

  • A. Schoch, Theory of linear and nonlinear perturbations of betatron oscillations in alternating gradient synchrotrons. CERN 57-21, 1957

    Google Scholar 

  • C. Steier, Lattice and emittance optimisation for the ALS lattice upgrade. NIM A649, 25 (2011)

    Article  ADS  Google Scholar 

  • C. Steier, in Progress with the R&D towards a diffraction-limited upgrade of the ALS, in Proceedings of the IPAC15, Richmond, 2015, to appear

    Google Scholar 

  • Y. Shimosaki et al., Lattice design for a very low emittance lattice for SPring8 II, in Proceedings of the IPAC11, San Sebastian, 2012, p. 942

    Google Scholar 

  • A. Streun, Lattices for light sources CERN CAS 2006-02, 2006, p. 217

    Google Scholar 

  • A. Streun et al., Commissioning of the Swiss light source, in Proceedings of the PAC01, Chicago, 2001, p. 224

    Google Scholar 

  • C. Sun et al., Small emittance and low beta lattice optimisation. PRSTAB 15, 054002 (2012)

    Google Scholar 

  • C. Thomas et al., X-ray pinhole camera resolution and emittance measurements. PRSTAB 14, 022805 (2010)

    Google Scholar 

  • E. Todesco, W. Scandale, Numerical methods to estimate the dynamic aperture. Part. Acc. 54, 203 (1996)

    Google Scholar 

  • R. Walker, Quantum excitation and equilibrium beam properties. CERN CAS 94-01, 1995, 481

    Google Scholar 

  • C.X. Wang, Explicit formulae for second order driving terms due to sextupoles and chromatic effects due to quadrupoles. Technical Report LS-330, ANL/APS, 2012

    Google Scholar 

  • F. Willeke, Commissioning of the NSLS-II, in Proceedings of the IPAC15, Richmond, 2015, to appear

    Google Scholar 

  • A. Xiao et al., On-axis injection schemes for ultra low emittance light sources, in Proceedings of the IPAC13, Shanghai, 2013, p. 1076

    Google Scholar 

  • W. Yoho et al., MBA lattice proposal for the SLS, in Proceedings of the EPAC94, London, 1994, p. 627

    Google Scholar 

  • M. Zisman et al., ZAP’s User Manual, LBL 21270, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Bartolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bartolini, R. (2020). Storage Ring Design for Synchrotron Radiation Sources. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-23201-6_7

Download citation

Publish with us

Policies and ethics