Skip to main content

Electronic Beam-Scanning Technology for Small Satellite Communication Systems and Their Future Development

  • Living reference work entry
  • First Online:
Handbook of Small Satellites

Abstract

The rapid development of a new antenna technology known as electronic beam-scanning systems, phased arrays, flat panels, and other phraseologies has opened up new vistas for antenna solutions of twenty-first-century satellite communications. This technology has the potential to be applied in the deployment and use of MEO, LEO, and small satellite constellations, in addition to supporting ground systems of GEO/MEO/LEO satellite networks. In particular, it holds the promise of expanding the addressable market for mobility applications of satellite networks by virtue of reducing size, weight, power, and cost compared to mechanically steered antennas. Development of this technology for space antennas and ground systems is still evolving. This chapter describes the nature of electronic beam-scanning antennas, the technology challenges, their applications, and state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M.T. Ababneh, C. Tarau, W.G. Anderson, High temperature lightweight heat pipes for solid-state power amplifier (SSPA) thermal management, in 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (IEEE, 2019), pp. 656–665

    Google Scholar 

  • A.S. Abdellatif, M. Faraji-Dana, N. Ranjkesh, A. Taeb, M. Fahimnia, S. Gigoyan, S. Safavi-Naeini, Low loss, wideband, and compact CPW-based phase shifter for millimeter-wave applications. IEEE Trans. Microwave Theory Tech. 62(12), 3403–3413 (2014)

    Article  Google Scholar 

  • W.M. Abdel-Wahab, D. Busuioc, S. Safavi-Naeini, Millimeter-wave high radiation efficiency planar waveguide series-fed dielectric resonator antenna (DRA) array: Analysis, design, and measurements. IEEE Trans. Antennas Propag. 59(8), 2834–2843 (2011)

    Article  Google Scholar 

  • W.M. Abdel-Wahab, Y. Wang, S. Safavi-Naeini, SIW hybrid feeding network-integrated 2-D DRA array: simulations and experiments. IEEE Antennas Wirel. Propag. Lett. 15, 548–551 (2015)

    Article  Google Scholar 

  • W.M. Abdel-Wahab, H. Al-Saedi, E.H.M. Alian, M. Raeis-Zadeh, A. Ehsandar, A. Palizban, S. Safavi-Naeini, A modular architecture for wide scan angle phased array antenna for K/Ka mobile SATCOM, in 2019 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2019), pp. 1076–1079)

    Google Scholar 

  • H. Al-Saedi, S. Gigoyan, W.M. Abdel-Wahab, A. Palizban, A. Taeb, A. Ehsandar, S. Safavi-Naeini, A low-cost Ka-band circularly polarized passive phased-array antenna for mobile satellite applications. IEEE Trans. Antennas Propag. 67(1), 221–231 (2018)

    Article  Google Scholar 

  • L. Baggen, M. Böttcher, S. Otto, O. Litschke, R. Gieron, S. Holzwarth, Phased array technology by IMST: a comprehensive overview, in 2013 IEEE International Symposium on Phased Array Systems and Technology (IEEE, 2013), pp. 21–28

    Google Scholar 

  • H. Bolandhemmat, M. Fakharzadeh, P. Mousavi, S.H. Jamali, G.Z. Rafi, S. Safavi-Naeini, Active stabilization of vehicle-mounted phased-array antennas. IEEE Trans. Veh. Technol. 58(6), 2638–2650 (2009)

    Article  Google Scholar 

  • A. Chakraborty, B. Gupta, Paradigm phase shift: RF MEMS phase shifters: an overview. IEEE Microw. Mag. 18(1), 22–41 (2016)

    Article  Google Scholar 

  • M. Chen, A.V. Pham, C. Kapusta, J. Iannotti, W. Kornrumpf, N. Evers, … N. Karabudak, Development of multilayer organic modules for hermetic packaging of RF MEMS circuits, in 2006 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2006), pp. 271–274

    Google Scholar 

  • R. Chirikov, P. Rocca, L. Manica, S. Santarelli, R.J. Mailloux, A. Massa, Innovative GA-based strategy for polyomino tiling in phased array design. In 2013 7th European Conference on Antennas and Propagation (EuCAP) (IEEE, 2013), pp. 2216–2219

    Google Scholar 

  • E. Cohen, M. Ruberto, M. Cohen, O. Degani, S. Ravid, D. Ritter, A CMOS bidirectional 32-element phased-array transceiver at 60 GHz with LTCC antenna. IEEE Trans. Microwave Theory Tech. 61(3), 1359–1375 (2013)

    Article  Google Scholar 

  • D. Ehyaie, A. Mortazawi, A new approach to design low cost, low complexity phased arrays, in 2010 IEEE MTT-S International Microwave Symposium (IEEE, 2010), pp. 1270–1273

    Google Scholar 

  • F. Ellinger, U. Mayer, M. Wickert, N. Joram, J. Wagner, R. Eickhoff, … R. Kraemer, Integrated adjustable phase shifters. IEEE Microw. Mag. 11(6), 97–108 (2010)

    Article  Google Scholar 

  • A.O. Fadamiro, O.J. Famoriji, R. Kashif, M.S. Ali, F. Lin, An improved calibration algorithm for active phased array antenna, in 2018 IEEE International Conference on Computational Electromagnetics (ICCEM) (IEEE, 2018), pp. 1–3

    Google Scholar 

  • M. Fakharzadeh, S.H. Jamali, P. Mousavi, S. Safavi-Naeini, Fast beamforming for mobile satellite receiver phased arrays: Theory and experiment. IEEE Trans. Antennas Propag. 57(6), 1645–1654 (2009)

    Article  Google Scholar 

  • S. Gao, Y. Rahmat-Samii, R.E. Hodges, X.X. Yang, Advanced antennas for small satellites. Proc. IEEE 106(3), 391–403 (2018)

    Article  Google Scholar 

  • GILAT, in RaySat EagleRay 5000, Pioneering Ka-band SOTM for Defense and Security Applications (GILAT, 2014)

    Google Scholar 

  • X. Gu, A. Valdes-Garcia, A. Natarajan, B. Sadhu, D. Liu, S.K. Reynolds, W-band scalable phased arrays for imaging and communications. IEEE Commun. Mag. 53(4), 196–204 (2015)

    Article  Google Scholar 

  • S. Han, I. Chih-Lin, Z. Xu, C. Rowell, Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53(1), 186–194 (2015)

    Article  Google Scholar 

  • H. Hashemi, X. Guan, A. Komijani, A. Hajimiri, A 24-GHz SiGe phased-array receiver-LO phase-shifting approach. IEEE Trans. Microwave Theory Tech. 53(2), 614–626 (2005)

    Article  Google Scholar 

  • R.L. Haupt, Optimized weighting of uniform subarrays of unequal sizes. IEEE Trans. Antennas Propag. 55(4), 1207–1210 (2007)

    Article  Google Scholar 

  • W.H. Henderson, W.W. Milroy, Wireless communication applications of the continuous transverse stub (CTS) array at microwave and millimeter wave frequencies, in IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005 (IEEE, 2005), pp. 253–256

    Google Scholar 

  • A. Hoehn, P.B. Hager, J.T. Harder, Design characterization of an electronic steerable Ka-band antenna using liquid crystal phase shifters, in 2013 IEEE Aerospace Conference (IEEE, 2013), pp. 1–14

    Google Scholar 

  • W. Hong, K.H. Baek, Y. Lee, Y. Kim, S.T. Ko, Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Commun. Mag. 52(9), 63–69 (2014)

    Article  Google Scholar 

  • X. Huang, J.A. Zhang, R.P. Liu, Y.J. Guo, L. Hanzo, Airplane-aided integrated networking for 6G wireless: Will it work? IEEE Veh. Technol. Mag. 14(3), 84–91 (2019)

    Article  Google Scholar 

  • W.A. Imbriale, S.S. Gao, L. Boccia, Space Antenna Handbook (Wiley, New York, 2012)

    Book  Google Scholar 

  • S. Jeon, Y.J. Wang, H. Wang, F. Bohn, A. Natarajan, A. Babakhani, A. Hajimiri, A scalable 6-to-18 GHz concurrent dual-band quad-beam phased-array receiver in CMOS. IEEE J. Solid State Circuits 43(12), 2660–2673 (2008)

    Article  Google Scholar 

  • M.C. Johnson, S.L. Brunton, N.B. Kundtz, J.N. Kutz, Sidelobe canceling for reconfigurable holographic metamaterial antenna. IEEE Trans. Antennas Propag. 63(4), 1881–1886 (2015)

    Article  MathSciNet  Google Scholar 

  • S.Y. Kim, O. Inac, C.Y. Kim, D. Shin, G.M. Rebeiz, A 76–84-GHz 16-element phased-array receiver with a chip-level built-in self-test system. IEEE Trans. Microwave Theory Tech. 61(8), 3083–3098 (2013)

    Article  Google Scholar 

  • J. King, J. Ness, G. Bonin, M. Brett, D. Faber, Nanosat Ka-band communications-A paradigm shift in small satellite data throughput (2012), https://digitalcommons.usu.edu/smallsat/2012/all2012/54/

  • D. Kissinger, B. Laemmle, L. Maurer, R. Weigel, Integrated test for silicon front ends. IEEE Microw. Mag. 11(3), 87–94 (2010)

    Article  Google Scholar 

  • K.J. Koh, G.M. Rebeiz, An X-and Ku-band 8-element phased-Array receiver in 0.18-μm SiGe BiCMOS technology. IEEE J. Solid State Circuits 43(6), 1360–1371 (2008)

    Article  Google Scholar 

  • Y. Li, K.M. Luk, 60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays. IEEE Trans. Antennas Propag. 63(3), 1075–1085 (2015)

    Article  MathSciNet  Google Scholar 

  • E. Lier, R. Melcher, A modular and lightweight multibeam active phased receiving array for satellite applications: Design and ground testing. IEEE Antennas Propag. Mag. 51(1), 80–90 (2009)

    Article  Google Scholar 

  • E. Lier, D. Purdy, J. Ashe, G. Kautz, An on-board integrated beam conditioning system for active phased array satellite antennas, in Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No. 00TH8510) (IEEE, 2000), pp. 509–512

    Google Scholar 

  • O. Litschke, W. Simon, S. Holzwarth, A 30 GHz highly integrated LTCC antenna element for digital beam forming arrays, in 2005 IEEE Antennas and Propagation Society International Symposium, vol 3 (IEEE, 2005), pp. 297–300

    Google Scholar 

  • K.K.W. Low, A. Nafe, S. Zihir, T. Kanar, G.M.A Rebeiz, Scalable circularly-polarized 256-element Ka-band phased-array SATCOM transmitter with±60 beam scanning and 34.5 dBW EIRP, in 2019 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2019), pp. 1064–1067

    Google Scholar 

  • E. Meniconi, V. Ziegler, R. Sorrentino, T. Chaloun, 3D integration technologies for a planar dual band active array in Ka-band, in 2013 European Microwave Conference (IEEE, 2013), pp. 215–218

    Google Scholar 

  • P. Mousavi, M. Fakharzadeh, S.H. Jamali, K. Narimani, M. Hossu, H. Bolandhemmat, … S. Safavi-Naeini, A low-cost ultra low profile phased array system for mobile satellite reception using zero-knowledge beamforming algorithm. IEEE Trans. Antennas Propag. 56(12), 3667–3679 (2008)

    Article  Google Scholar 

  • A. Natarajan, S. K. Reynolds, M.D. Tsai, S.T. Nicolson, J.H.C. Zhan, D.G. Kam, … B.A. Floyd, A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid State Circuits 46(5), 1059–1075 (2011)

    Article  Google Scholar 

  • Northern Sky Research, It’s a mobile world for flat panel antennas (2017). [Online]. http://www.nsr.com/news-resources/nsr-in-the-press/nsr-press-releases/its-a-mobile-world-for-flat-panel-antennas/

  • Phasor Soluions, COMMS on the Move (2015)

    Google Scholar 

  • Y. Rahmat-Samii, V. Manohar, J.M. Kovitz, For satellites, think small, dream big: A review of recent antenna developments for CubeSats. IEEE Antennas Propag. Mag. 59(2), 22–30 (2017)

    Article  Google Scholar 

  • P. Rocca, R.J. Mailloux, G. Toso, GA-based optimization of irregular subarray layouts for wideband phased arrays design. IEEE Antennas Wirel. Propag. Lett. 14, 131–134 (2014)

    Article  Google Scholar 

  • W. Roh, J.Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, … F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)

    Article  Google Scholar 

  • H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. Roeloffzen, … M. Wintels, Conformal phased array with beam forming for airborne satellite communication, in 2008 International ITG Workshop on Smart Antennas (IEEE, 2008), pp. 343–350

    Google Scholar 

  • S.D. Silverstein, Application of orthogonal codes to the calibration of active phased array antennas for communication satellites. IEEE Trans. Signal Process. 45(1), 206–218 (1997)

    Article  Google Scholar 

  • S. Strunck, A. Gaebler, O.H. Karabey, A. Heunisch, B. Schulz, T. Rabe, … R. Jakoby, Reliability study of a tunable Ka-band SIW-phase shifter based on liquid crystal in LTCC-technology. Int. J. Microw. Wirel. Technol. 7(5), 521–527 (2015)

    Article  Google Scholar 

  • A.I. Sulyman, A.T. Nassar, M.K. Samimi, G.R. MacCartney, T.S. Rappaport, A. Alsanie, Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag. 52(9), 78–86 (2014)

    Article  Google Scholar 

  • F. Tabarani, L. Boccia, T. Purtova, A. Shamsafar, H. Schumacher, G. Amendola, 0.25-μm BiCMOS system-on-Chip for K-/Ka-band satellite communication transmit–receive active phased arrays. IEEE Trans. Microw. Theory Tech. 66(5), 2325–2339 (2018)

    Article  Google Scholar 

  • ThinKom, ThinAir Falcon-Ka-2517, Office-in-the-Air-Connectivity (ThinKom Global Connectivity, 2014)

    Google Scholar 

  • S. Vaccaro, D.L. del Río, R.T. Sánchez, R. Baggen, Low cost phased array for mobile Ku-band satellite terminal, in Proceedings of the Fourth European Conference on Antennas and Propagation (IEEE, 2010), pp. 1–5

    Google Scholar 

  • J. Xu, Z.N. Chen, X. Qing, W. Hong, Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC. IEEE Trans. Antennas Propag. 59(3), 826–832 (2010)

    Article  Google Scholar 

  • J.G. Yang, K. Yang, Ka-band 5-bit MMIC phase shifter using InGaAs PIN switching diodes. IEEE Microwave Wireless Compon Lett. 21(3), 151–153 (2011)

    Article  Google Scholar 

  • X. Yi, T.X. Huang, R.A. Minasian, Photonic beamforming based on programmable phase shifters with amplitude and phase control. IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011)

    Article  Google Scholar 

  • Y. Zhang, S. Pan, Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters. IEEE J. Quantum Electron. 54(4), 1–12 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safieddin (Ali) Safavi-Naeini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Safavi-Naeini, S.(., Slekys, A.G. (2020). Electronic Beam-Scanning Technology for Small Satellite Communication Systems and Their Future Development. In: Pelton, J. (eds) Handbook of Small Satellites. Springer, Cham. https://doi.org/10.1007/978-3-030-20707-6_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20707-6_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20707-6

  • Online ISBN: 978-3-030-20707-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics