Skip to main content

Aerobic Hydrocarbon-Degrading Bacteroidetes

  • Reference work entry
  • First Online:
Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes

Abstract

Bacteroidetes (Bacteroidaeota) is composed of six classes and is widely distributed in natural environments. The contribution of this phylum to hydrocarbon degradation in the Gulf of Mexico during the Deepwater Horizon oil spill was estimated by DNA stable-isotope probing (SIP) and metagenomic analysis. An approximation across different studies suggests that about 3% of hydrocarbon-degrading bacteria were from the phylum Bacteroidetes. The number of isolates from the Bacteroidetes that can degrade hydrocarbons has been increasingly reported during the last decade. In this chapter, the characteristics of Arenibacter algicola, Bergeyella sp. RR7, Carboxylicivirga flava, Chryseobacterium hungaricum, Echinicola sp. SWSAL15, Mesoflavibacter sp. ITB11, Myroides pelagicus, Olivibacter oleidegradans, Olleya sp. ITB9, Parapedobacter pyrenivorans, Pedobacter cryoconitis, Yeosuana aromativorans, and an unidentified Flavobacterium sp. are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Awadhi H, Al-Mailem D, Dashti N et al (2012) Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol 194:689–705

    Article  CAS  PubMed  Google Scholar 

  • Al-Mailem D, Kansour M, Radwan S (2015) Bacterial communities associated with biofouling materials used in bench-scale hydrocarbon bioremediation. Environ Sci Pollut Res 22:3570–3585

    Article  CAS  Google Scholar 

  • Alonso-Gutiérrez J, Costa MM, Figueras A et al (2008) Alcanivorax strain detected among the cultured bacterial community from sediments affected by the ‘Prestige’ oil spill. Mar Ecol Prog Ser 362:25–36

    Article  Google Scholar 

  • Bauer M, Kube M, Teeling H et al (2006) Whole genome analysis of the marine BacteroidetesGramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213

    Article  CAS  PubMed  Google Scholar 

  • Castle DM, Montgomery MT, Kirchnab DL (2006) Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol Ecol 56:55–63

    Article  CAS  PubMed  Google Scholar 

  • Eilers H, Pernthaler J, Glöckner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Li D, Tao Y et al (2008) Isolation and description of a stable carbazole-degrading microbial consortium consisting of Chryseobacterium sp. NCY and Achromobacter sp. NCW. Curr Microbiol 57:251–257

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez T, Rhodes G, Mishamandani S et al (2014) Polycyclic aromatic hydrocarbon degradation of phytoplankton associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahnke RL, Meier-Kolthoff JP, García-López M et al (2016) Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 7:2003

    Article  PubMed  PubMed Central  Google Scholar 

  • Handley KM, Piceno YM, Hu P et al (2017) Metabolic and spatio-taxonomic response of uncultivated seafloor bacteria following the Deepwater Horizon oil spill. ISME J 11:2569–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Liu W, Wang B et al (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598

    Article  CAS  PubMed  Google Scholar 

  • Jurelevicius D, Alvarez VM, Marques JM et al (2013) Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms. Appl Environ Microbiol 79:5927–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappell AD, Wei Y, Newton RJ et al (2014) The polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill. Front Microbiol 5:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BS, Oh H-Y, Kang H et al (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14:205–211

    CAS  Google Scholar 

  • Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  • Koo H (2013) Microbial responses to MC252 in Gulf of Mexico sediments using bTEFAP and bioinformatics tools. Master degree thesis, University of Alabama, p 89

    Google Scholar 

  • Kwon KK, Lee HS, Jung HB, Kim S-J (2006) Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea. Int J Syst Evol Microbiol 56:727–732

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang X-L, Ma X-Y et al (2012) Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresour Technol 124:129–136

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu J (2013) Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. MicrobiologyOpen 2:492–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lladó A, Solanas AM, de Lapuente J et al (2012) A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil. Sci Total Environ 435(436):262–269

    Article  CAS  PubMed  Google Scholar 

  • Maneerat S, Bamba T, Harada K et al (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 70:254–259

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Spröer C, Schumann P, Schinner F (2003) Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Munoz R, Rosselló-Móra R, Amann R (2016) Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 39:281–296

    Article  PubMed  Google Scholar 

  • Okai M, Kihara I, Yokoyama Y et al (2015) Isolation and characterization of benzo[a]pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan. FEMS Microbiol Lett 362:fnv143

    Article  CAS  PubMed  Google Scholar 

  • Oren A, da Costa MS, Garrity GM et al (2015) Proposal to include the rank of phylum in the international code of nomenclature of prokaryotes. Int J Syst Evol Microbiol 65:4284–4287

    Article  CAS  PubMed  Google Scholar 

  • Patra AK, Cho HH, Kwon YM et al (2016) Phylogenetic relationship between symbionts of tubeworm Lamellibrachia satsuma and the sediment microbial community in Kagoshima Bay. Ocean Sci J 51:317–332

    Article  CAS  Google Scholar 

  • Prince RC, Amande TJ, McGenity TJ (2018) Prokaryotic hydrocarbon degraders. In: McGenity TJ (ed) Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes: handbook of hydrocarbon and lipid microbiology, 2nd edn. Springer, Cham., https://doi.org/10.1007/978-3-319-60053-6_15-1

  • Ramadass K, Smith E, Palanisami T et al (2015) Evaluation of constraints in bioremediation of weathered hydrocarbon-contaminated arid soils through microcosm biopile study. Int J Environ Sci Technol 12:3597–3612

    Article  CAS  Google Scholar 

  • Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci 109:20292–20297

    Article  PubMed  Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE et al (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  PubMed  Google Scholar 

  • Sauret C, Böttjer D, Talarmin A et al (2015) Top-down control of diesel-degrading prokaryotic communities. Microb Ecol 70:445–458

    Article  CAS  PubMed  Google Scholar 

  • Sebők F, Cserháti M, Dobolyi C et al (2014) Survival of alkane-degrading microorganisms in biogas digestate compost in microcosm experiments. Appl Ecol Environ Res 12:947–958

    Article  Google Scholar 

  • Sherr K, Lunda T, Klose V et al (2012) Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. J Biotechnol 157:564–572

    Article  CAS  Google Scholar 

  • Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Microbiol Biotechnol 53:292–297

    CAS  Google Scholar 

  • Szabó I, Szoboszlay S, Kriszt B et al (2011) Olivibacter oleidegradans sp. nov., a hydrocarbon-degrading bacterium isolated from a biofilter clean-up facility on a hydrocarbon-contaminated site. Int J Syst Evol Microbiol 61:2861–2865

    Article  CAS  PubMed  Google Scholar 

  • Szoboszlay S, Atzél B, Kukolya J et al (2008) Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58:2748–2754

    Article  CAS  PubMed  Google Scholar 

  • Thomas F, Hehemann JH, Rebuffet E et al (2011) Environmental and Gut Bacteroidetes: the food connection. Front Microbiol 2:93. (16 pp)

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhong R, Shan D, Shao Z (2014) Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow Sea, China. Appl Microbiol Biotechnol 98:7253–7269

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Qi C, Chen W et al (2016) Carboxylicivirga flava sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 66:5412–5416

    Article  CAS  PubMed  Google Scholar 

  • Yetti E, Thontowi A, Yopi (2016) Polycyclic aromatic hydrocarbon degrading bacteria from the Indonesian Marine Environment. Biodiversitas 17:857–864

    Article  Google Scholar 

  • Yoon J, Maneerat S, Kawai F, Yokota A (2006) Myroides pelagicus sp. nov., isolated from seawater in Thailand. Int J Syst Evol Microbiol 56:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Lai Q, Sun F, Zheng T, Shao Z (2015) The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol 6:853

    PubMed  PubMed Central  Google Scholar 

  • Yuste L, Corbella ME, Turiegano MJ et al (2000) Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiol Ecol 32:69–75

    Article  CAS  PubMed  Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-K, Li X-M, Zhang M-J et al (2013) Parapedobacter pyrenivorans sp. nov., isolated from a pyrene-degrading microbial enrichment, and emended description of the genus Parapedobacter. Int J Syst Evol Microbiol 63:3994–3999

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Jin Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kwon, K., Kwon, Y.M., Kim, SJ. (2019). Aerobic Hydrocarbon-Degrading Bacteroidetes. In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_7

Download citation

Publish with us

Policies and ethics