Skip to main content

Global Consequences of Ubiquitous Hydrocarbon Utilizers

  • Reference work entry
  • First Online:
Book cover Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Hydrocarbon-degrading organisms are found throughout the biosphere – from the poles to the tropics, from the depths of the sea to the upper atmosphere, and from the deepest mines to mountaintops. Some are opportunistic – able to degrade hydrocarbons but also other substrates – while others appear to have specialized on hydrocarbons to the exclusion of other foods. They impinge on human activities in many ways – they remove seeped and spilled hydrocarbons from water and soil and also from wastewater and commercially contaminated air. But they also consume hydrocarbons in reservoirs, fuel, and lubricant tanks with important deleterious effects, and they are implicated in the “souring” of hydrocarbon reservoirs and in the corrosion of oil pipelines. Our challenge is to encourage the former and discourage the latter – both offering opportunities to improve on current practice as we understand the responsible organisms more thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RM, Al-Kindi S, Al-Kharusi S (2015) Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microb Ecol 69:95–105

    Article  CAS  PubMed  Google Scholar 

  • Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46:8799–8807

    Article  CAS  PubMed  Google Scholar 

  • Amaral-Zettler L, Artigas LF, Baross J, Bharathi L, Boetius A, Chandramohan D, Herndl G, Kogure K, Neal P, Pedrós-Alió C, Ramette A, Schouten S, Stal L, Thessen A, Leeuw J, Sogin M (2010) A global census of marine microbes. In: AD MI (ed) Life in the world’s oceans: diversity, distribution and abundance, Oxford, pp 223–245

    Google Scholar 

  • Ardern E, Lockett WT (1914) Experiments on the oxidation of sewage without the aid of filters. J Soc Chem Ind 33:523–539

    Article  CAS  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous (sic!). Biotechnol Bioeng 14:309–318

    Article  CAS  PubMed  Google Scholar 

  • Balba MT, Al-Daher R, Al-Awadhi N, Chino H, Tsuji H (1998) Bioremediation of oil-contaminated desert soil: the Kuwaiti experience. Environ Int 24:163–173

    Article  CAS  Google Scholar 

  • Barbier CJ (2015) MDL – 2179 oil spill by the oil rig “Deepwater horizon.” http://www.laed.uscourts.gov/sites/default/files/OilSpill/Orders/1152015FindingsPhaseTwo.pdf

  • Bartling C (2016) Microbially induced corrosion: silent killer of infrastructure. Pipeline Gas J. https://pgjonline.com/2016/01/15/microbially-induced-corrosion-silent-killer-of-infrastructure/

  • Bazylinski DA, Wirsen CO, Jannasch HW (1989) Microbial utilization of naturally occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl Environ Microbiol 55:2832–2836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett B, Adams JJ, Gray ND, Sherry A, Oldenburg TB, Huang H, Larter SR, Head IM (2013) The controls on the composition of biodegraded oils in the deep subsurface–part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. Org Geochem 56:94–105

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Bornstein S, Plavnik I, Lipstein B (1982) Evaluation of methanol-grown bacteria and hydrocarbon-grown yeast as sources of protein for poultry: trials with laying birds. Br Poult Sci 23:487–499

    CAS  PubMed  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1996) The microbiological fate of polycyclic aromatic hydrocarbons: carbon and oxygen balances for bacterial degradation of model compounds. Appl Microbiol Biotechnol 45:556–561

    Article  CAS  PubMed  Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Burdock GA, Carabin IG (2004) Generally recognized as safe (GRAS): history and description. Toxicol Letts 150:3–18

    Article  CAS  Google Scholar 

  • Caldwell ME, Garrett RM, Prince RC, Suflita JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32:2191–2195

    Article  CAS  Google Scholar 

  • Callbeck CM, Agrawal A, Voordouw G (2013) Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl Environ Microbiol 79:5059–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantera S, Muñoz R, Lebrero R, López JC, Rodríguez Y, García-Encina PA (2018) Technologies for the bioconversion of methane into more valuable products. Curr Opin Biotechnol 50:128–135

    Article  CAS  PubMed  Google Scholar 

  • Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters – implications for origin of natural gas. AAPG Bull 62:2441–2453

    CAS  Google Scholar 

  • Chai L, Zhang F, She Y, Banat IM, Hou D (2015) Impact of a microbial-enhanced oil recovery field trial on microbial communities in a low-temperature heavy oil reservoir. Nature Environ Pollut Technol 14:455–462

    CAS  Google Scholar 

  • Chang SC, Adriaens P (2007) Nano-immunodetection and quantification of mycobacteria in metalworking fluids. Environ Eng Sci 24:58–72

    Article  CAS  Google Scholar 

  • Crisafi F, Giuliano L, Yakimov MM, Azzaro M, Denaro R (2016) Isolation and degradation potential of a cold-adapted oil/PAH-degrading marine bacterial consortium from Kongsfjorden (Arctic region). Rend Fis Acc Lincei 27:261–270

    Article  Google Scholar 

  • Delhoménie MC, Heitz M (2005) Biofiltration of air: a review. Crit Rev Biotechnol 25:53–72

    Article  CAS  PubMed  Google Scholar 

  • Delort AM, Vaïtilingom M, Amato P, Sancelme M, Parazols M, Mailhot G, Laj P, Deguillaume L (2010) A short overview of the microbial population in clouds: potential roles in atmospheric chemistry and nucleation processes. Atmos Res 98:249–260

    Article  CAS  Google Scholar 

  • Eden B, Laycock PJ, Fielder M (1993) Oilfield reservoir souring. HSE Books, Sudbury. Available at www.hse.gov.uk/research/othpdf/200-399/oth385.pdf

    Google Scholar 

  • El-Sayed AH, Mahmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. Int Biodeter Biodeg 37:69–79

    Article  Google Scholar 

  • Farwell C, Reddy CM, Peacock E, Nelson RK, Washburn L, Valentine DL (2009) Weathering and the fallout plume of heavy oil from strong petroleum seeps near Coal Oil Point, CA. Environ Sci Technol 43:3542–3548

    Article  CAS  PubMed  Google Scholar 

  • Fingas M (2012) The basics of oil spill cleanup. CRC Press, Boca Raton

    Book  Google Scholar 

  • Firth MJ, Prince RC, Boufadel M (2016) Applications I: degradation–pollution mitigation and waste treatment introduction. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer, Berlin/Heidelberg, pp 1–10

    Google Scholar 

  • Gainey PL (1917) Effect of paraffin on the accumulation of ammonia and nitrates in the soil. J Agr Res 10:355–364

    CAS  Google Scholar 

  • Gao P, Tian H, Wang Y, Li Y, Li Y, Xie J, Zeng B, Zhou J, Li G, Ma T (2016) Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China. Sci Rep 6:20174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett RM, Pickering IJ, Haith CE, Prince RC (1998) Photooxidation of crude oils. Environ Sci Technol 32:3719–3723

    Article  CAS  Google Scholar 

  • Gaspar J, Davis D, Camacho C, Alvarez PJ (2016) Biogenic versus thermogenic H2S source determination in Bakken Wells: considerations for biocide application. Environ Sci Technol Lett 3:127–132

    Article  CAS  Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginter RLM (1930) Causative agents of sulphate-reduction in oilwell waters. Bull Amer Assoc Petrol Geol 14:139–152

    CAS  Google Scholar 

  • Gittel A, Sørensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Community structure and sulfate reducer activity in water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A (2012) Succession of deferribacteres and epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35:165–174

    Article  CAS  PubMed  Google Scholar 

  • Godoy-Faúndez A, Antizar-Ladislao B, Reyes-Bozo L, Camaño A, Sáez-Navarrete C (2008) Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama region (Chile). J Hazard Mater 151:649–657

    Article  CAS  PubMed  Google Scholar 

  • Harris C (1995) The Braer incident: Shetland Islands, January 1993. In: International oil spill conference, American Petroleum Institute, pp 813–819

    Google Scholar 

  • Hazen TC (2010) Cometabolic bioremediation. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2505–2514

    Chapter  Google Scholar 

  • Henkel LA, Nevins H, Martin M, Sugarman S, Harvey JT, Ziccardi MH (2014) Chronic oiling of marine birds in California by natural petroleum seeps, shipwrecks, and other sources. Mar Pollut Bull 79:155–163

    Article  CAS  PubMed  Google Scholar 

  • Hentati D, Chebbi A, Loukil S, Kchaou S, Godon JJ, Sayadi S, Chamkha M (2016) Biodegradation of fluoranthene by a newly isolated strain of Bacillus stratosphericus. Environ Sci Pollut Res 23:15088–15100

    Article  CAS  Google Scholar 

  • Henthorne L, Wodehouse J (2012) The science of membrane technology to further enhance oil recovery. SPE improved oil recovery symposium, Tulsa. Paper 154281

    Google Scholar 

  • Hill EC, Hill GC (2008) Microbial contamination and associated corrosion in fuels, during storage, distribution and use. Adv Maters Res 38:257–268

    Article  Google Scholar 

  • Hill EC (1977) Microbial infection of cutting fluids. Tribol Int 10:49–54

    Google Scholar 

  • Hitzman DO, Sperl GT, Sandbeck KA (1995) Method for reducing the amount of and preventing the formation of hydrogen sulfide in an aqueous system. US Patent 5,405,531

    Google Scholar 

  • Holtslag AA, Svensson G, Baas P, Basu S, Beare B, Beljaars AC, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernström M, van de Wiel BJH (2013) Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc 94:1691–1706

    Article  Google Scholar 

  • Hornafius JS, Quigley D, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res: Oceans 104:20703–20711

    Article  CAS  Google Scholar 

  • Huettel M, Overholt WA, Kostka JE, Hagan C, Kaba J, Wells WB, Dudley S (2018) Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping. Mar Pollut Bull 126:488–500

    Article  CAS  PubMed  Google Scholar 

  • Husain T (1995) Kuwaiti oil fires; regional environmental perspective. Pergamon Press

    Google Scholar 

  • Jenneman GE, McInerney MJ, Knapp RM (1986) Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol 51:1205–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenneman GE, Moffitt PD, Bala GA, Webb RH (1999) Sulfide removal in reservoir brine by indigenous bacteria. SPE Prod Facilities 14:219–225

    Google Scholar 

  • Jernelöv A, Lindén O (1981) Ixtoc I: a case study of the world’s largest oil spill. Ambio 1981:299–306

    Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  PubMed  Google Scholar 

  • Jurelevicius D, von der Weid I, Korenblum E, Valoni E, Penna M, Seldin L (2008) Effect of nitrate injection on the bacterial community in a water–oil tank system analyzed by PCR-DGGE. J Ind Microbiol Biotechnol 35:251–255

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J Biosci Bioeng 91:64–70

    Article  CAS  PubMed  Google Scholar 

  • L’haridon S, Reysenbacht AL, Glenat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223

    Article  Google Scholar 

  • Larter S, Wilhelms A, Head I, Koopmans M, Aplin A, Di Primio R, Zwach C, Erdmann M, Telnaes N (2003) The controls on the composition of biodegraded oils in the deep subsurface – part 1: biodegradation rates in petroleum reservoirs. Org Geochem 34:601–613

    Article  CAS  Google Scholar 

  • Larter S, Huang H, Adams J, Bennett B, Jokanola O, Oldenburg T, Jones M, Head I, Riediger C, Fowler M (2006) The controls on the composition of biodegraded oils in the deep subsurface: part II – geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. AAPG Bull 90:921–938

    Article  CAS  Google Scholar 

  • Laskin AI (1977) Single cell protein. Ann Rep Ferment Proc 1:151–180

    Article  CAS  Google Scholar 

  • Lee PS (1995) Preservation of metalworking fluids. In: Morpeth FF (ed) Preservation of surfactant formulations. Springer, Dordrecht, pp 284–310

    Chapter  Google Scholar 

  • Lee BS, Wang JL (2006) Concentration variation of isoprene and its implications for peak ozone concentration. Atmos Environ 40:5486–5495

    Article  CAS  Google Scholar 

  • Lee JS, Ray RI, Little BJ (2010) An assessment of alternative diesel fuels: microbiological contamination and corrosion under storage conditions. Biofouling 26:623–635

    Article  CAS  PubMed  Google Scholar 

  • Liang R, Grizzle RS, Duncan KE, McInerney MJ, Suflita JM (2014) Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Frontiers Microbiol 5:89

    Article  Google Scholar 

  • Liang R, Aydin E, Le Borgne S, Sunner J, Duncan KE, Suflita JM (2018) Anaerobic biodegradation of biofuels and their impact on the corrosion of a Cu-Ni alloy in marine environments. Chemosphere 195:427–436

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Kumar NR, Lai Q, Du J, Dobritsa AP, Samadpour M, Shao Z (2015) Identification of strains Bacillus aerophilus MTCC 7304T as Bacillus altitudinis and Bacillus stratosphericus MTCC 7305T as a Proteus sp. and the status of the species Bacillus aerius Shivaji et al. 2006. Request for an opinion. Int J System Evol Microbiol 65:3228–3231

    Article  CAS  Google Scholar 

  • van Loosdrecht MC, Brdjanovic D (2014) Anticipating the next century of wastewater treatment. Science 344:1452–1453

    Article  PubMed  Google Scholar 

  • Luengas AT, Hort C, Platel V, Elias A, Barona A, Moynault L (2017) Removal of traces of toluene and p-xylene in indoor air using biofiltration and a hybrid system (biofiltration+ adsorption). Environ Sci Pollut Res 24:10674–10684

    Article  CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BK (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateles RI, Baruah JN, Tannenbaum SR (1967) Growth of a thermophilic bacterium on hydrocarbons: a new source of single-cell protein. Science 157:1322–1323

    Article  CAS  PubMed  Google Scholar 

  • Mau S, Valentine DL, Clark JF, Reed J, Camilli R, Washburn L (2007) Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California. Geophys Res Lett 34(22):L22603

    Google Scholar 

  • McElhiney JE (2008) Inhibiting reservoir souring using a treated injection water. US Patent 7,464,760

    Google Scholar 

  • McFarlane E (2011) Problems caused by microbes and treatment strategies downstream petroleum microbiology–an industry perspective. In: Whitby C, Skorvhus TL (eds) Applied microbiology and molecular biology in oilfield systems. Springer, Dordrecht, pp 159–167

    Google Scholar 

  • McGinley HR, van der Kraan GM (2012) Benchmarking of biocidal chemistries for the control of corrosion biofilms. SPE international conference & workshop on oilfield corrosion, Aberdeen. Paper 156036

    Google Scholar 

  • McHugh TE, Kulkarni PR, Newell CJ, Connor JA, Garg S (2013) Progress in remediation of groundwater at petroleum sites in California. Groundwater 52:898–907

    Article  CAS  Google Scholar 

  • McMahon PB, Chapelle FH (2008) Redox processes and water quality of selected principal aquifer systems. Groundwater 46:259–271

    Article  CAS  Google Scholar 

  • McNutt MK, Chu S, Lubchenco J, Hunter T, Dreyfus G, Murawski SA, Kennedy DM (2012) Applications of science and engineering to quantify and control the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20222–20228

    Article  PubMed  PubMed Central  Google Scholar 

  • Misiti T, Tezel U, Pavlostathis SG (2013) Fate and effect of naphthenic acids on oil refinery activated sludge wastewater treatment systems. Water Res 47:449–460

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1993) In situ bioremediation: when does it work? National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council (2003) Oil in the sea III. National Academies Press, Washington, DC

    Google Scholar 

  • Nie Y, Zhao JY, Tang YQ, Guo P, Yang Y, Wu XL, Zhao F (2016) Species divergence vs. functional convergence characterizes crude oil microbial community assembly. Frontiers Microbiol 7:1254

    Article  Google Scholar 

  • O’Brien PL, DeSutter TM, Casey FX, Wick AF, Khan E (2017) Evaluation of soil function following remediation of petroleum hydrocarbons – a review of current remediation techniques. Curr Pollut Rep 3:192–205

    Article  CAS  Google Scholar 

  • Ozaki N, Takamura Y, Kojima K, Kindaichi T (2015) Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system. Water Res 80:337–345

    Article  CAS  PubMed  Google Scholar 

  • Penner TJ, Foght JM, Budwill K (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int J Coal Geol 82:81–93

    Article  CAS  Google Scholar 

  • Permanyer A, Gallego JL, Caja MA, Dessort D (2010) Crude oil biodegradation and environmental factors at the Riutort oil shale mine, SE Pyrenees. J Petrol Geol 33:123–139

    Article  CAS  Google Scholar 

  • Pieja AJ, Morse MC, Cal AJ (2017) Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41:123–131

    Article  CAS  PubMed  Google Scholar 

  • Prince RC (2015) Oil spill dispersants: boon or bane? Environ Sci Technol 49:6376–6384

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Butler JD, Redman AD (2017a) The rate of crude oil biodegradation in the sea. Environ Sci Technol 51:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Clark JR, Lindstrom JE (2017b) Field studies demonstrating the efficacy of bioremediation in marine environments. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer protocols handbooks. Springer, Berlin/Heidelberg, pp 81–93

    Google Scholar 

  • Quigley DC, Hornafius JS, Luyendyk BP, Francis RD, Clark J, Washburn L (1999) Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production. Geology 27:1047–1050

    Article  Google Scholar 

  • Quijano G, Miguel-Romera JA, Bonilla-Morte LM, Figueroa-González I (2017) HC-0B-05: two-phase partitioning bioreactors for treatment of volatile hydrocarbons. In: Heimann K, Karthikeyan O, Muthu S (eds) Biodegradation and bioconversion of hydrocarbons, environmental footprints and eco-design of products and processes. Springer, Singapore, pp 225–258

    Chapter  Google Scholar 

  • Radzuan MA, Belope MA, Thorpe RB (2016) Removal of fine oil droplets from oil-in-water mixtures by dissolved air flotation. Chem Engineer Res Design 115:19–33

    Article  CAS  Google Scholar 

  • Rajeev L, Chen A, Kazakov AE, Luning EG, Zane GM, Novichkov PS, Wall JD, Mukhopadhyay A (2015) Regulation of nitrite stress response in Desulfovibrio vulgaris Hildenborough, a model sulfate-reducing bacterium. J Bacteriol 197:3400–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond RL (1974) Reclamation of hydrocarbon contaminated ground waters. US Patent 3,846,290

    Google Scholar 

  • Raymond RL, Hudson JO, Jamison VW (1976) Oil degradation in soil. Appl Environ Microbiol 31:522–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9:e87217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Readman JW, Bartocci J, Tolosa I, Fowler SW, Oregioni B, Abdulraheem MY (1996) Recovery of the coastal marine environment in the Gulf following the 1991 war-related oil spills. Mar Pollut Bull 32:493–498

    Article  CAS  Google Scholar 

  • Restrepo-Flórez JM, Wood JA, Rehmann L, Thompson M, Bassi A (2015) Effect of biodiesel on biofilm biodeterioration of linear low density polyethylene in a simulated fuel storage tank. J Energy Resour Technol 137:032211

    Article  CAS  Google Scholar 

  • Roca AL, Georgiadis N, Pecon-Slattery J, O’Brien SJ (2001) Genetic evidence for two species of elephant in Africa. Science 293:1473–1477

    Article  CAS  PubMed  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudyk S, Søgaard E (2011) How specific microbial communities benefit the oil industry: microbial-enhanced oil recovery (MEOR). In: Whitby C, Skorvhus TL (eds) Applied microbiology and molecular biology in oilfield systems. Springer, Dordrecht, pp 179–187

    Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh B, Ward O (2012) Potential applications of bioprocess technology in petroleum industry. Biodegradation 23:865–880

    Article  CAS  PubMed  Google Scholar 

  • SJV Geology (2015) The Lakeview Gusher http://www.sjvgeology.org/history/lakeview.html

  • Skovhus TL, Enning D, Lee JS (eds) (2017) Microbiologically influenced corrosion in the upstream oil and gas industry. CRC Press, Boca Raton

    Google Scholar 

  • Smith DJ (2013) Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology 13:981–990

    Article  PubMed  Google Scholar 

  • Smith SN, Joosten MW (2006) Corrosion of carbon steel by H2S in CO2 containing oilfield environments. In: Corrosion 2006, NACE international paper 06115

    Google Scholar 

  • Solano-Serena F, Marchal R, Ropars M, Lebeault JM, Vandecasteele JP (1999) Biodegradation of gasoline: kinetics, mass balance and fate of individual hydrocarbons. J Appl Microbiol 86:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Sowards JW, Williamson CH, Weeks TS, McColskey JD, Spear JR (2014) The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels. Corrosion Sci 79:128–138

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Suflita JM, Davidova IA, Gieg LM, Nanny M, Prince RC (2004) Anaerobic hydrocarbon biodegradation and the prospects for microbial enhanced energy production. Stud Surf Sci Catalysis 151:283–305

    Article  CAS  Google Scholar 

  • Suri N, Voordouw J, Voordouw G (2017) The effectiveness of nitrate-mediated control of the oil field sulfur cycle depends on the toluene content of the oil. Frontiers Microbiol 8:956

    Article  Google Scholar 

  • Terry RE, Rogers JB (2015) Applied petroleum reservoir engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin

    Book  Google Scholar 

  • Togna AP, Singh M (1994) Biological vapor-phase treatment using biofilter and biotrickling filter reactors: practical operating regimes. Environ Prog Sustain Energy 13:94–97

    CAS  Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2004) Anaerobic biodegradation of alicyclic constituents of gasoline and natural gas condensate by bacteria from an anoxic aquifer. FEMS Microbiol Ecol 49:129–135

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vázquez S, Nogales B, Ruberto L, Mestre C, Christie-Oleza J, Ferrero M, Bosch R, Mac Cormack WP (2013) Characterization of bacterial consortia from diesel-contaminated Antarctic soils: towards the design of tailored formulas for bioaugmentation. Int Biodeter Biodeg 77:22–30

    Article  CAS  Google Scholar 

  • Voordouw G, Grigoryan AA, Lambo A, Lin S, Park HS, Jack TR, Coombe D, Clay B, Zhang F, Ertmoed R, Miner K, Arensdorf JJ (2009) Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ Sci Technol 43:9512–9518

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963

    Article  CAS  PubMed  Google Scholar 

  • Wardell JN, Battersby NS, Stewart DJ (1986) A note on the control of sulphate-reducing bacteria in seawater by U.V. irradiation. J Appl Microbiol 60:73–76

    Google Scholar 

  • Waterhouse AF, MacKinnon JA, Nash JD, Alford MH, Kunze E, Simmons HL, Polzin KL, St. Laurent LC, Sun OM, Pinkel R, Talley LD, Whalen CB, Huussen TN, Carter GS, Fer I, Waterman S, Naveira Garabato AC, Sanford TB, Lee CM (2014) Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J Phys Oceanog 44:1854–1872

    Article  Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:1034–1037

    Article  CAS  PubMed  Google Scholar 

  • Word JQ, Clark JR, Word LS (2014) Comparison of the acute toxicity of Corexit 9500 and household cleaning products. Human Ecol Risk Assess 21:707–725

    Article  CAS  Google Scholar 

  • Zhao F, Zhang J, Shi R, Han S, Ma F, Zhang Y (2015) Production of biosurfactant by a Pseudomonas aeruginosa isolate and its applicability to in situ microbial enhanced oil recovery under anoxic conditions. RSC Adv 5:36044–36050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prince, R.C. (2019). Global Consequences of Ubiquitous Hydrocarbon Utilizers. In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_30

Download citation

Publish with us

Policies and ethics