Skip to main content

Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Oleiphilaceae and Relatives

  • Reference work entry
  • First Online:
Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes

Abstract

Despite the ubiquity of marine hydrocarbon-degrading bacteria from the family Oleiphilaceae, until now there is only one strain from this family with a validly published name and fully assembled genome, Oleiphilus messinensis strain ME102 (= DSM 13489). The availability of draft genomes of 27 other isolates gave us the opportunity to get an insight into the genome evolution and speciation patterns within this group. Whole-genome alignments and genome-to-genome distance calculation data demonstrated that Oleiphilaceae consists of four distinct genome clusters that correspond to the species level. Furthermore, we suggest that all known Oleiphilaceae genomes cluster into two genera, the first one being Oleiphilus, which includes O. messinensis ME102 and the second represented by bacteria isolated near Hawaii. The Oleiphilaceae pangenome of 1796 core gene clusters roughly corresponds to the two-thirds of an Oleiphilaceae genome. All high-quality genomes had double copies of almA coding for flavin-binding family monooxygenase linked with degradation of long-chain alkanes. Alkane monooxygenases with pairwise identities between 43% and 86.5% were encoded by four genomes, with two of them having double loci. Cytochromes P450 were present in all genomes and were assigned to two distinct clusters, which, together with the low redundancy of alkane monooxygenases, points at different microorganisms as the sources of acquisition of alkane-monooxygenation enzymes by Oleiphilaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-González A, Rosselló-Móra R, Marqués S (2013) Characterization of the anaerobic microbial community in oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environ Microbiol 15(1):77–92

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  • Aronesty E (2013) Comparison of sequencing utility programs. The Open Bioinformatics Journal 7:1–8

    Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  Google Scholar 

  • Berry D, Gutierrez T (2017) Evaluating the detection of hydrocarbon-degrading bacteria in 16S rRNA gene sequencing surveys. Front Microbiol 8:896

    Article  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  Google Scholar 

  • Golyshin PN, Chernikova T, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. Nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911

    CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):119

    Article  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64(2):346–351

    Article  CAS  Google Scholar 

  • Kodama Y, Shumway M, Leinonen R (2011) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40(D1):D54–D56

    Article  Google Scholar 

  • Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189

    Article  CAS  Google Scholar 

  • Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143(4):1141–1149

    Article  CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14(1):60

    Article  Google Scholar 

  • Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935

    Article  CAS  Google Scholar 

  • Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, Finn RD (2014) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(D1):D130–D137

    Article  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2014) Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  Google Scholar 

  • Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW (2017) Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2:1533–1542

    Article  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131

    Article  CAS  Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4:e1900v1

    Google Scholar 

  • Scoma A, Barbato M, Borin S, Daffonchio D, Boon N (2016) An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep 6:31316

    Article  CAS  Google Scholar 

  • Shao Z, Wang W (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116

    PubMed  PubMed Central  Google Scholar 

  • Singh SK, Kotakonda A, Kapardar RJ, Kankipati HK, Rao PS, Sankaranarayanan PM, Vetaikorumagan SR, Gundlapally SP, Nagappa R, Shivaji S (2015) Response of bacterioplankton to iron fertilization of the Southern Ocean, Antarctica. Front Microbiol 6:863

    PubMed  PubMed Central  Google Scholar 

  • Sosa OA, Repeta DJ, Ferrón S, Bryant JA, Mende DR, Karl DM, DeLong EF (2017) Isolation and characterization of bacteria that degrade phosphonates in marine dissolved organic matter. Front Microbiol 8:1786

    Article  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  Google Scholar 

  • Toshchakov SV, Korzhenkov AA, Chernikova TN, Ferrer M, Golyshina OV, Yakimov MM, Golyshin PN (2017) The genome analysis of Oleiphilus messinensis ME102 (DSM 13489T) reveals backgrounds of its obligate alkane-devouring marine lifestyle. Mar Genomics 36:41–47

    Article  Google Scholar 

  • Wang Y, Coleman-Derr D, Chen G, Gu YQ (2015) OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 43:W78–W84

    Article  CAS  Google Scholar 

  • Yakimov MM, Golyshin PN (2014) The Family Oleiphilaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-642-38922-1_285

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(2):339–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work of ST was supported by the RSF project # 17-74-30025. MF acknowledges grants PCIN-2014-107 (within ERA NET IB2 grant nr. ERA-IB-14-030—MetaCat), PCIN-2017-078 (within the Marine Biotechnology ERA-NET (ERA-MBT) funded under the European Commission’s Seventh Framework Programme, 2013–2017, Grant agreement 604814), BIO2014-54494-R, and BIO2017-85522-R from the Ministerio de Ciencia, Innovación y Universidades, formerly Ministerio de Economía, Industria y Competitividad. MMY, TNC, OVG, MF, KEJ, and PNG received funding from the European Union’s Horizon 2020 research and innovation program Blue Growth: Unlocking the potential of Seas and Oceans under grant agreement no. [634486] (project acronym INMARE). PNG acknowledges ERA NET IB2, grant no. ERA-IB-14-030, and UK Biotechnology and Biological Sciences Research Council (BBSRC), grant no. BB/M029085/1. TCH, OVG, and PNG acknowledge the support of the Centre for Environmental Biotechnology Project funded by the European Regional Development Fund (ERDF) through the Welsh Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter N. Golyshin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Korzhenkov, A.A. et al. (2019). Aerobic Hydrocarbon-Degrading Gammaproteobacteria: Oleiphilaceae and Relatives. In: McGenity, T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_23

Download citation

Publish with us

Policies and ethics