Skip to main content

Heat Flow, Seafloor: Methods and Observations

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions

Conductive heat flux :

The rate of heat transfer through a substance per unit area. The conductive heat flux, commonly defined in one dimension, is the product of the thermal gradient and thermal conductivity, with SI units of W m−2. Heat flux is referred to in historical and some current oceanographic literature as “heat flow,” but in precise physical terms, heat flux equals heat flow density.

Advective heat flux :

The rate of heat transfer per unit area as a consequence of material motion. The advective heat flux is commonly defined as the product of the temperature, heat capacity, and material velocity, with SI units of W m−2.

Thermal conductivity:

The constant of proportionality that relates the thermal gradient to the conductive heat flux, indicating the ability of a medium to transfer heat by conduction. SI units are in W m−1 K−1.

Hydrothermal circulation:

Large-scale pore-fluid convection driven by geothermal buoyancy, with flow being strongly influenced by...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Anderson RN, Skilbeck JN (1980) Oceanic heat flow. In: Emiliani C (ed) The Sea, vol 7. Wiley Interscience, New York, pp 489–523

    Google Scholar 

  • Andreassen K, Mienert J, Bryn P, Singh SC (2000) A double gas-hydrate related bottom simulating reflector at the Norwegian continental margin. In gas hydrates: challenges for the future. Ann N Y Acad Sci, New York 912:126–135

    Article  Google Scholar 

  • Becker K, Fisher AT, Tsuji T (2013) New packer experiments and borehole logs in upper oceanic crust: evidence for ridge-parallel consistency in crustal hydrogeologic properties. Geochem Geophys Geosyst 14(8). https://doi.org/10.1002/ggge.20201

    Article  Google Scholar 

  • Bullard EC (1954) The flow of heat through the floor of the Atlantic Ocean. Proc R Astrono Soc London A 222:408–429

    Article  Google Scholar 

  • Coggon RM, Rehkämpera M, Atteck C, Teagle DAH, Teagle AJC, Cooper MJ (2014) Controls on thallium uptake during hydrothermal alteration of the upper ocean crust. Geochim Cosmochim Acta 144:25–42. https://doi.org/10.1016/j.gca.2014.09.001

    Article  Google Scholar 

  • Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24

    Article  Google Scholar 

  • Davis EE (1988) Oceanic heat flow density. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 223–260

    Chapter  Google Scholar 

  • Davis EE, Becker K, Pettigrew T, Carson B (1992) CORK: a hydrologic seal and downhole observatory for deep-sea boreholes. Proc Ocean Drill Program Initial Rep 139:45–53

    Google Scholar 

  • Davis EE, Wang K, He J, Chapman DS, Villinger H, Rosenberger A (1997a) An unequivocal case for high Nusselt number hydrothermal convection in sediment-buried igneous oceanic crust. Earth Planet Sci Lett 146:137–150

    Article  Google Scholar 

  • Davis EE, Villinger H, Macdonald RD, Meldrum RD, Grigel J (1997b) A robust rapid-response probe for measuring bottom-hole temperatures in deep-ocean boreholes. Mar Geophys Res 19:267–281

    Article  Google Scholar 

  • Davis EE, Chapman DS, Wang K, Villinger H, Fisher AT, Robinson SW, Grigel J, Pribnow D, Stein JS, Becker K (1999) Regional heat flow variations on the sedimented Juan de Fuca Ridge eastern flank: constraints on lithospheric cooling and lateral hydrothermal heat transport. J Geophys Res 104:17,675–17,688

    Article  Google Scholar 

  • Davis EE, Wang K, Becker K, Thomson RE, Yashayaev I (2003) Deep-ocean temperature variations and implications for errors in seafloor heat flow determinations. J Geophys Res 108:2034. https://doi.org/10.1029/2001JB001695

    Article  Google Scholar 

  • Dickens GR, Qinby-Hunt MS (1997) Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. J Geophys Res 102:773–783

    Article  Google Scholar 

  • Elder JW (1965) Physical processes in geothermal areas. In: Lee WHK (ed) Terrestrial heat flow. Am Geophys Union, Washington, DC, pp 211–239

    Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224

    Article  Google Scholar 

  • Embley RW, Hobart MA, Anderson RN, Abbott D (1983) Anomalous heat flow in the northwest Atlantic: a case for continued hydrothermal circulation in 80-M.y. crust. J Geophys Res 88:1,067–1,074

    Article  Google Scholar 

  • Fisher AT, Becker K (1995) The correlation between heat flow and basement relief: observational and numerical examples and implications for upper crustal permeability. J Geophys Res 100:12,641–12,657

    Article  Google Scholar 

  • Fisher AT, Harris RN (2010) Using seafloor heat flow as a tracer to map subseafloor fluid flow in the oceanic crust. Geofluids 10:142–160

    Google Scholar 

  • Fisher AT, Von Herzen RP (2005) Models of hydrothermal circulation within 106 Ma seafloor: constraints on the vigor of fluid circulation and crustal properties below the Madeira Abyssal Plain. Geochem Geophys Geosyst 6. https://doi.org/10.1029/2005GC001013.

    Article  Google Scholar 

  • Fisher AT, Wheat CG (2010) Seamounts as conduits for massive fluid, heat, and solute fluxes on ridge flanks. Oceanography 23:74–87

    Article  Google Scholar 

  • Fisher AT, Villinger H, Harris RN, Von Herzen RP, Pfender M, Müller M, Grevemeyer I, Kaul N, Wheat CG (2002) Comment on “Deep-penetration heat flow probes raise questions about interpretations from shorter probes,” by Géli et al., 2001. EOS Trans Am Geophys Union 82(29):317, 320, Eos Trans Am Geophys Union 83(18):196

    Google Scholar 

  • Fisher AT, Stein CA, Harris RN, Wang K, Silver EA, Pfender M, Hutnak M, Cherkaoui A, Bodzin R, Villinger H (2003) Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos plate. Geophys Res Lett 30(11):1550. https://doi.org/10.1029/2002GL016766.

    Article  Google Scholar 

  • Fisher AT, Alt JC, Bach W (2014) Hydrogeologic properties, processes and alteration in the igneous ocean crust. In: Stein R, Blackman D, Inagaki F, Larsen H-C (eds) Earth and life processes discovered from subseafloor environment – a decade of science achieved by the Integrated Ocean Drilling Program (IODP). Elsevier, Amsterdam/New York, pp 507–551

    Google Scholar 

  • Harris RN, Chapman DS (2004) Deep-seated oceanic heat flux, heat deficits, and hydrothermal circulation. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, pp 311–336

    Google Scholar 

  • Harris RN, Grevemeyer I, Ranero CR, Villinger H, Barckhausen U, Henke T, Mueller C, Neben S (2010) Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors. Geochem Geophys Geosyst 11:Q12S28. https://doi.org/10.1029/2010GC003272

    Article  Google Scholar 

  • Harris RN, Spinelli GA, Fisher AT (2017) Hydrothermal circulation and the thermal structure of shallow subduction zones. Geosphere 13:1–20

    Article  Google Scholar 

  • Hasterok D, Chapman DS, Davis EE (2011) Oceanic heat flow: implications for global heat loss. Earth Planet Sci Lett 311:386–395. https://doi.org/10.1016/j.epsl.2011.09.044

    Article  Google Scholar 

  • Heesemann M, Villinger H, Fisher AT, Trehu AM, Witte S (2006) Testing and deployment of the new APC3 tool to determine in situ temperature while piston coring. In: Collett TS, Riedel M, Malone MJ (eds) Proceedings of the integrated ocean drilling program expedition 311. Integrated Ocean Drilling Program Management International, Inc., College Station

    Google Scholar 

  • Horai K, Von Herzen RP (1985) Measurement of heat flow on Leg 86 of the Deep Sea Drilling Project. Initial Reports, DSDP 86:759–777

    Google Scholar 

  • Hyndman RD (1984) Review of Deep Sea Drilling Project geothermal measurements through Leg 71. Initial Reports, DSDP 78B:813–823

    Google Scholar 

  • Hyndman RD, Wang K (1993) Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J Geophys Res 98:2039–2060

    Article  Google Scholar 

  • Hyndman RD, Davis EE, Wright JA (1979) The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and in situ thermal conductivity. Mar Geophys Res 4:181–205

    Article  Google Scholar 

  • Jaupart C, Labrosse S, Mareschal J-C (2007) Temperatures, heat, and energy in the mantle of the Earth. Treatise on Geophysics 7:253–303

    Article  Google Scholar 

  • Langseth MG, LePichon X, Ewing M (1966) Crustal structure of the midocean ridges, 5, heat flow through the Atlantic Ocean floor and convection currents. J Geophys Res 71:5321–5355

    Article  Google Scholar 

  • Lauer RM, Saffer DM, Harris RN (2017) Links between clay transformation and earthquakes along the Costa Rican subduction margin. Geophys Res Lett 44:7725–7732. https://doi.org/10.1002/2017GL073744

    Article  Google Scholar 

  • Lee WHK, Uyeda S (1965) Review of heat flow data. In: Lee WHK (ed) Terrestrial heat flow. Geophysical monograph, vol 8. American Geophysical Union, Washington, DC, pp 87–190

    Chapter  Google Scholar 

  • Lister CRB (1972) On the thermal balance of a mid-ocean ridge. Geophys J R Astron Soc 26:515–535

    Article  Google Scholar 

  • Lister CRB (1979) The pulse-probe method of conductivity measurement. Geophys J R Astron Soc 57:451–461

    Article  Google Scholar 

  • Lister CRB, Sclater JG, Davis EE, Villinger H, Nagihara S (1990) Heat flow maintained in ocean basins of great age: investigations in the north-equatorial west Pacific. Geophys J Int 102:603–630

    Article  Google Scholar 

  • Mottl MJ, Wheat CG (1994) Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim Cosmochim Acta 58:2,225–2,237

    Article  Google Scholar 

  • Neumann F, Negrete-Aranda R, Harris RN, Contreras J, Sclater JG, González-Fernández A (2017) Systematic heat flow measurements across the Wagner Basin, northern gulf of California. Earth Planet Sci Lett 479:340–353

    Article  Google Scholar 

  • Newman AV, Schwartz SY, Gonzalez V, DeShon HR, Protti JM, Dorman LM (2002) Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys Res Lett 29. https://doi.org/10.1029/2002GL015409

    Google Scholar 

  • Orcutt BN, Sylvan JB, Rogers DR, Delaney J, Lee RW, Girguis PR (2015) Carbon fixation by basalt-hosted microbial communities. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00904

  • Parsons B (1982) Causes and consequences of the relation between area and age of the ocean floor. J Geophys Res 87:289–303

    Article  Google Scholar 

  • Petterson H (1949) Exploring the bed of the ocean. Nature 4168:468–470

    Article  Google Scholar 

  • Revelle RR, Maxwell AE (1952) Heat flow through the floor of the eastern North Pacific Ocean. Nature 170:199–202

    Article  Google Scholar 

  • Ruppel C, Dickens GR, Castellini DG, Gilhooly W, Lizarralde D (2005) Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys Res Lett 32:L04605

    Article  Google Scholar 

  • Sclater JG, Crowe J, Anderson RN (1976) On the reliability of ocean heat flow averages. J Geophys Res 81:2,997–3,006

    Article  Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the earth. Rev Geophys 18:269–311

    Article  Google Scholar 

  • Spinelli GA, Saffer D (2004) Along-strike variations in underthrust sediment dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity. Geophys Res Lett 31. https://doi.org/10.1029/2003GL018863

  • Stein JS, Fisher AT (2001) Multiple scales of hydrothermal circulation in Middle Valley, northern Juan de Fuca Ridge: physical constraints and geologic models. J Geophys Res 106(B5):8563–8580

    Article  Google Scholar 

  • Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99:3,081–3,095

    Article  Google Scholar 

  • Uyeda S, Horai K (1980) Heat flow measurements on Deep Sea Drilling Project Leg 60. In: Initial reports, DSDP, vol 60. U. S. Govt. Printing Office, Washington, DC, pp 789–800

    Google Scholar 

  • Villinger H, Davis EE (1987) A new reduction algorithm for marine heat flow measurements. J Geophys Res 92:12,846–12,856

    Article  Google Scholar 

  • Villinger H, Grevemeyer I, Kaul N, Hauschild J, Pfender M (2002) Hydrothermal heat flux through aged oceanic crust: where does the heat escape? Earth Planet Sci Lett 202:159–170

    Article  Google Scholar 

  • Villinger H, Trehu AM, Grevemeyer I (2010) Seafloor marine heat flux measurements and estimation of heat flux from seismic observations of bottom simulating reflectors. In: Riedel M, Willoughby EC, Chopra S (eds) Geophysical characterization of gas hydrates. Society of Exploration Geophysicists, Tulsa, pp 279–300

    Chapter  Google Scholar 

  • Von Herzen RP (2004) Geothermal evidence for continuing hydrothermal circulation in older (> 60 M.y.) ocean crust. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, pp 414–447

    Google Scholar 

  • Von Herzen RP, Uyeda S (1963) Heat flow through the eastern Pacific Ocean floor. J Geophys Res 68:4,219–4,250

    Article  Google Scholar 

  • Wei M, Sandwell D (2006) Estimates of heat flow from Cenozoic seafloor using global depth and age data. Tectonophysics 417:325–335

    Article  Google Scholar 

  • Wheat CG, Mottl MJ, Fisher AT, Kadko D, Davis EE, Baker E (2004) Heat and fluid flow through a basaltic outcrop on a ridge flank. Geochem Geophys Geosyst 5(12). https://doi.org/10.1029/2004GC000700

    Article  Google Scholar 

  • Williams DL, Von Herzen RP (1974) Heat loss from the earth: new estimate. Geology 2:327–330

    Article  Google Scholar 

  • Williams DL, Von Herzen RP, Sclater JG, Anderson RN (1974) The Galapagos spreading center: lithospheric cooling and hydrothermal circulation. Geophys J R Astron Soc 38:587–608

    Article  Google Scholar 

  • Wright JA, Louden KE (1989) Handbook of seafloor heat flow. CRC Press, Boca Raton. 498 pp

    Google Scholar 

  • Yamano M, Uyeda S, Aoki Y, Shipley TH (1982) Estimates of heat flow derived from gas hydrates. Geology 10:339–343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl E. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davis, E.E., Fisher, A.T. (2020). Heat Flow, Seafloor: Methods and Observations. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_65-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_65-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics