Skip to main content

Bioactive Compounds of Pili (Canarium ovatum Engl.)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 224 Accesses

Abstract

Pili (Canarium ovatum) is a tropical tree that is indigenous to the Philippines where its center of genetic diversity is located in the Bicol Region. As a nut, Canarium ovatum is considered the priced commodity, and it is often used in the confectionery industry. The pulp, which is totally discarded as waste, contains considerable quantities of bioactive compounds present in the pulp meal as well as in the oil. This chapter describes the characterization of all the parts of Canarium ovatum fruit as source of hydrophilic and lipophilic bioactive compounds with high antioxidant functionality. The exploitation of this underutilized fruit presents a great potential source of phytochemicals with antioxidants functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Coronel RE (1996) Pili nut: Canarium ovatum Engl. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant REsearch, Gatersleben/International Plant Genetics Resources Institute, Rome

    Google Scholar 

  2. HUi-Lin L (1970) The origin of cultivated plants in Southeast Asia. Econ Bot 24(1):3–19

    Article  Google Scholar 

  3. Roa-Ilan M (2017) Bicol’s Pili Nut Soars as Profitable Commodity through R&D BAR Digest. https://www.bar.gov.ph/index.php/digest-home/digest-archives/775-january-march-2017-issue-vol-19-no-1/6167-bicol-s-pili-nut-soars-as-profitable-commodity-through-r-d. Accessed 25 June 2019

  4. Pham LJ, Dumandan NG (2015) Philippine pili: composition of the lipid molecular species. J Ethn Foods 2(4):147–153

    Article  Google Scholar 

  5. Arenas EH, Trinidad TP (2017) Heavy metal and microbiological profiles of defatted pili (Canarium ovatum, Engl.) pulp meal residue and acute oral toxicity of its ethanolic extract in mice. Int Food Res J 24(4):1763–1770

    CAS  Google Scholar 

  6. Catelo SP, Jimenez CD (2016) An exploratory study of the economic potential of Philippine Pili pulp oil from waste pulp. J Econ Manag Agric Dev 2(1):23–27

    Google Scholar 

  7. Bueno JM, Sáez-Plaza P, Ramos-Escudero F, Jiménez AM, Fett R, Asuero AG (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Crit Rev Anal Chem 42(2):126–151

    Article  CAS  Google Scholar 

  8. Aril-dela Cruz JV, Bungihan ME, Cruz TEE, Sagum RS (2017) Canarium ovatum Engl. (Pili) exocarp crude extract as functional food colorant incorporated in yogurt developed product. Food Res 2(1):89–98

    Article  Google Scholar 

  9. del Rosario OM (2008) Antioxidant components of pili. AGRIS FAO http://agris.fao.org/agris-search/search.do?recordID=PH2011000495. Accessed 18 June 2019

  10. Narasimhan A, Chinnaiyan M, Karundevi B (2015) Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 40(8):769–781

    Article  CAS  Google Scholar 

  11. Ohnishi M, Matuo T, Tsuno T, Hosoda A, Nomura E, Taniguchi H et al (2004) Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. BioFactors Oxf Eng l21(1–4):315–319

    Article  Google Scholar 

  12. Kuo CT, Liu TH, Hsu TH, Lin FY, Chen HY (2015) Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit. Asian Pac J Trop Med 8(12):1013–1021

    Article  CAS  Google Scholar 

  13. Mokiran NN, Ismail A, Azlan A, Hamid M, Hassan FA (2014) Effect of dabai (Canarium odontophyllum) fruit extract on biochemical parameters of induced obese–diabetic rats. J Funct Foods 8:139–149

    Article  CAS  Google Scholar 

  14. Arenas EH, Trinidad TP (2017) Fate of polyphenols in pili (Canarium ovatum Engl.) pomace after in vitro simulated digestion. Asian Pac J Trop Biomed 7(1):53–58

    Article  Google Scholar 

  15. Kawabata K, Yoshioka Y, Terao J (2019) Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 24. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359708/. Accessed 9 June 2019

  16. Grilo EC, Costa PN, Gurgel CSS, Beserra AF de L, Almeida FN de S, Dimenstein R (2014) Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci Techno l34(2):379–385

    Article  Google Scholar 

  17. Stuetz W, Schlörmann W, Glei M (2017) B-vitamins, carotenoids and α−/γ-tocopherol in raw and roasted nuts. Food Chem 221:222–227

    Article  CAS  Google Scholar 

  18. Blekas G, Tsimidou M, Boskou D (1995) Contribution of α-tocopherol to olive oil stability. Food Chem 52(3):289–294

    Article  CAS  Google Scholar 

  19. Brigelius-Flohé R (2006) Bioactivity of vitamin E. Nutr Res Rev 19(2):174–186

    Article  Google Scholar 

  20. Isnardy B, Wagner K-H, Elmadfa I (2003) Effects of alpha-, gamma-, and delta-tocopherols on the autoxidation of purified rapeseed oil triacylglycerols in a system containing low oxygen. J Agric Food Chem 51(26):7775–7780

    Article  CAS  Google Scholar 

  21. Wagner K-H, Isnardy B, Elmadfa I (2004) γ- and δ-tocopherols are more effective than α-tocopherol on the autoxidation of a 10% rapeseed oil triacylglycerol-in-water emulsion with and without a radical initiator. Eur J Lipid Sci Technol 106(1):44–51

    Article  CAS  Google Scholar 

  22. Suárez-Jiménez GM, López-Saiz CM, Ramírez-Guerra HE, Ezquerra-Brauer JM, Ruiz-Cruz S, Torres-Arreola W (2016) Role of endogenous and exogenous tocopherols in the lipid stability of marine oil systems: a review. Int J Mol Sci 17(12):1968

    Article  Google Scholar 

  23. Bruscatto MH, Zambiazi RC, Sganzerla M, Pestana VR, Otero D, de LRK et al (2009) Degradation of tocopherols in rice bran oil submitted to heating at different temperatures. J Chromatogr Sci 47(9):762–765

    Article  CAS  Google Scholar 

  24. Igielska-Kalwat J, Gościańska J, Nowak I (2015) Carotenoids as natural antioxidants. Postepy Hig Med Dosw (Online) 69:418–428

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Oils and Fats Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, College, Laguna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Pham .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pham, L.J., Dumandan, N.G. (2019). Bioactive Compounds of Pili (Canarium ovatum Engl.). In: Murthy, H.N., Bapat, V.A. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics