Skip to main content

Traffic Prediction of Congested Patterns

  • Reference work entry
  • First Online:
Book cover Complex Dynamics of Traffic Management
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2017

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  • Patents information at www.depatisnet.de

  • Abdulhai B, Porwal H, Recker W (1999) Short term freeway traffic flow prediction using genetically-optimized time-delay-based neural networks. In: Proceedings 78th annual meeting Transportation Research Board. National Academies Press, Washington, DC

    Google Scholar 

  • Acha-Daza JA, Hall FL (1993) A graphical comparison of the predictions for speed given by catastrophe theory and some classic models. Transp Res Rec 1398:119–124

    Google Scholar 

  • Ahmed MS, Cook AR (1979) Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transp Res Rec 722:1–9

    Google Scholar 

  • Arem BV, Kirby HR, Van Der Vlist MJM, Whittaker JC (1997) Recent advances and applications in the field of short-term traffic forecasting. Int J Forecast 13:1–12

    Article  Google Scholar 

  • Becker M, Fastenrath U (1998) Method for transmitting local data and measurement data from a terminal, including a telematic terminal, to a central traffic control unit. German Patent Publication DE 197 55 875 A1, USA: US6426709B1

    Google Scholar 

  • Ben-Akiva M, Cuneo D, Hasan M, Jha M, Yang Q (2003) Evaluation of freeway control using a microscopic simulation laboratory. Transp Res C Emerg Technol 11(1):29–50

    Article  Google Scholar 

  • Boker G, Lunze J (2001) State estimation in freeway traffic with floating car data. Automatisierungstechnik 49(11):497–504

    Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Burrus CS, Gopinath RA, Guo HT (1998) Introduction to wavelets and wavelet transforms: a primer. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Cetin M, Comert G (2006) Short-term traffic flow prediction with regime switching models. Transp Res Rec 1965:23–31

    Article  Google Scholar 

  • Chatfield C (2001) Time-series forecasting. Chapman & Hall/CRC, London

    Google Scholar 

  • Chen M, Chien SIJ (2001) Dynamic freeway travel-time prediction with probe vehicle data – link based versus path based. Transp Res Rec 1768:157–161

    Article  Google Scholar 

  • Chen H, Grant-Muller S (2001) Use of sequential learning for short-term traffic flow forecasting. Transp Res C 9:319–336

    Article  Google Scholar 

  • Chen H, Grant-Muller S, Mussone L, Montgomery F (2001) A study of hybrid neural network approaches and the effects of missing data on traffic forecasting. Neural Comput Appl 10:277–286

    Article  MATH  Google Scholar 

  • Chen Y, Bell MGH, Bogenberger K (2007) Reliable multipath planning and dynamic adaptation for a centralized road navigation system. IEEE Trans ITS 8(1):14–20

    Google Scholar 

  • Chickering DM, Heckerman D, Meek C (1997) A Bayesian approach to learning Bayesian networks with local structure. In: Proceedings 13th conference on uncertainty in artificial intelligence, Rhode Island, pp 80–89

    Google Scholar 

  • Chien SIJ, Kuchipudi CM (2003) Dynamic travel time prediction with real-time and historic data. J Transp Eng ASCE 129(6):608–616

    Article  Google Scholar 

  • Chrobok R, Wahle J, Schreckenberg M (2001) Traffic forecast using simulations of large scale networks. In: Stone B, Conroy P, Broggi A (eds) 4th international IEEE conference on intelligent transportation systems. IEEE, Oakland, pp 434–439

    Google Scholar 

  • Cremer M (1979) Traffic flow on freeways. Springer, Berlin. (in German)

    Google Scholar 

  • D’Angelo MP, Al-Deek HM, Wang MC (1999) Travel-time prediction for freeway corridors. Transp Res Rec 1676:184–191

    Article  Google Scholar 

  • Daganzo CF (1994) The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res B 28(4):269–287

    Article  Google Scholar 

  • Daganzo CF (1995) The cell transmission model, part II: network traffic. Transp Res B 29(2):79–93

    Article  Google Scholar 

  • Daganzo CF (1997) Fundamentals of transportation and traffic operations. Elsevier Science, Oxford, UK

    Book  Google Scholar 

  • Daganzo CF (1999) The lagged cell-transmission model. In: Ceder A (ed) Proceedings of the 14th international symposium on transportation and traffic theory. Elsevier Science, Jerusalem, Israel, pp 81–104

    Google Scholar 

  • Davis GA, Nihan NL (1991) Nonparametric regression and short-term freeway traffic forecasting. J Transp Eng 117(2):178

    Article  Google Scholar 

  • de Rham C, Lange R (2000) Short term forecast and evaluation for intelligent VMS settings. In: Proceedings of the 7th world congress on ITS, Torino

    Google Scholar 

  • Dharia A, Adeli H (2003) Neural network model for rapid forecasting of freeway link travel time. Eng Appl Artif Intell 16(7–8):617–613

    Google Scholar 

  • Dia H (2001) An object oriented neural network approach to short term traffic forecasting. Eur J Oper Res 131:253–261

    Article  MATH  Google Scholar 

  • Ding A, Zhao X, Jiao L (2002) Traffic flow time series prediction based on statistics learning theory. In: IEEE 5th international conference on intelligent transportation systems, Singapore, pp 727–730

    Google Scholar 

  • Dion F, Rakha H, Kang YS (2004) Comparison of delay estimates at under-saturated and 38 over-saturated pre-timed signalized intersections. Transp Res B Methodol 38(2):99–122

    Article  Google Scholar 

  • Disbro JE, Frame M (1989) Traffic flow theory and chaotic behaviour. Transp Res Rec 1225:109–125

    Google Scholar 

  • Dougherty M (1995) A review of neural networks applied to transport. Transp Res C 3(4):247–260

    Article  Google Scholar 

  • Edie LC, Foote RS (1960) Effect of shock waves on tunnel traffic flow. In: Highway Research Board – proceedings 39. National Research Council, Washington, DC, pp 492–505

    Google Scholar 

  • Fallah-Tafti M (2001) The application of artificial neural networks to anticipate the average journey time of traffic in the vicinity of merges. Knowl-Based Syst 14:203–211

    Article  Google Scholar 

  • Fastenrath U (1998) Method for determining traffic data and traffic information exchange. German Patent Publication DE 197 37 440 A1, USA: US 6329932B1

    Google Scholar 

  • Fuller WA (1996) Introduction to statistical time series, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Gartner NH, Stamatiadis C (2008) Optimization and control of urban traffic networks. This encyclopedia. Springer, New York

    Google Scholar 

  • Gazis D, Knapp C (1971) Online estimation of traffic densities from time series of traffic and speed data. Transp Sci 5:283–301

    Article  Google Scholar 

  • Geroliminis N, Skabardonis A (2011) Identification and analysis of queue spillovers in city street networks. IEEE Trans Intell Transp Syst 12(4):1107–1115

    Article  Google Scholar 

  • Gipps PGA (1981) A behavioural car-following model for computer simulation. Transp Res B 15:105–111

    Article  Google Scholar 

  • Grenander U (1996) Elements of pattern theory. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Hamed MM, Al-Masaeid HR, Bani Said ZM (1995) Short-term prediction of traffic volume in urban arterials. J Transp Eng 121(3):249–254

    Article  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Head LK (1995) Event-based short-term traffic flow prediction model. Transp Res Rec 1510:45–52

    Google Scholar 

  • Hecht-Nielsen R (1990) Neurocomputing. Addison-Wesley, Reading

    Google Scholar 

  • Heidemann D, Wimber P (1982) Types of traffic flow rate time series based on clustering methods. In: Straßenverkehrszählungen, vol 26. BASt, Germany

    Google Scholar 

  • Helbing D (1997) Traffic dynamics: new modelling concepts in physics. Springer, Berlin/Heidelberg. (in German)

    MATH  Google Scholar 

  • Hemmerle P, Koller M, Rehborn H, Kerner BS, Schreckenberg M (2016a) Fuel consumption in empirical synchronised flow in urban traffic. IET Intell Transp Syst 10(2):122–129

    Article  Google Scholar 

  • Hemmerle P, Koller M, Hermanns G, Schreckenberg M, Rehborn H, Kerner BS (2016b) Impact of synchronised flow in oversaturated city traffic on energy efficiency of conventional and electrical vehicles. In: Knoop V, Daamen W (eds) Traffic and granular flow ’15. Springer, Cham

    Google Scholar 

  • Hemmerle P, Koller M, Hermanns G, Rehborn H, Kerner BS, Schreckenberg M (2016c) Impact of synchronised flow in oversaturated city traffic on energy efficiency of conventional and electrical vehicles. Collect Dyn 1:1–27

    Google Scholar 

  • Hermanns G, Hemmerle P, Rehborn H, Koller M, Kerner BS, Schreckenberg M (2015) Microscopic simulation of synchronized flow in oversaturated city traffic: effect of drivers speed adaptation. Transp Res Rec J Transp Res Board 2490:47–55

    Article  Google Scholar 

  • Hermanns G, Hemmerle P, Rehborn H, Kerner BS, Schreckenberg M (2016) Microscopic simulations of oversaturated city traffic: features of synchronised flow patterns. In: Knoop V, Daamen W (eds) Traffic and granular flow ’15. Springer, Cham

    Google Scholar 

  • Highway Capacity Manual 2000 (2000) Transportation Research Board. National Research Council, Washington, DC

    Google Scholar 

  • Horvitz E, Apacible J, Sarin R, Liao L (2005) Prediction, expectation, and surprise: methods, designs, and study of a deployed traffic forecasting service. In: Proceedings of the conference on uncertainty and artificial intelligence 2005. AUAI Press, Edinburgh, Scotland

    Google Scholar 

  • Hoyer R, Chrobok R, Feldges M, Folkerts G, Friedrich B, Huber W, Kates R, Kemper C, Kirschfink H, Lange R, Listl G, Mathias P, Offermann F, Pinkofsky L, Rehborn H, Schlichting B, Stieler P, Thiemann O, Vortisch P (2003) Advice for data completion and data aggregation in traffic management applications. Hinweispapier der Forschungsgesellschaft für Straßen- und Verkehrswesen, FGSV-Papier, vol 382. (in German)

    Google Scholar 

  • Huang SH, Ran B (2003) An application of neural network on traffic speed prediction under adverse weather condition. In: 82nd TRB annual meeting. National Academies Press, Washington, DC

    Google Scholar 

  • Huisken G, Van Berkum EC (2003) A comparative analysis of short-range travel time prediction methods. In: 82nd TRB annual meeting Transportation Research Board. National Academies Press, Washington, DC

    Google Scholar 

  • Hunt PB, Robertson DI, Bretherton RD, Winton RI (1981) SCOOT – a traffic responsive method of coordinating signals. TRRL report no. LR1014, Transport and Road Research Laboratory, Crowthorne

    Google Scholar 

  • Innama S (2001) Short term prediction of highway travel time using MLP neural networks. In: 8th world congress on intelligent transportation systems, Sydney, pp 1–12

    Google Scholar 

  • Ishak S, Al-Deek H (2002) Performance evaluation of short term time series traffic prediction model. J Transp Eng ASCE 128(6):490–498

    Article  Google Scholar 

  • Ishak S, Alecsandru C (2004) Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings. J Transp Eng 130:452–465

    Article  Google Scholar 

  • Jiang X, Adeli H (2004) Wavelet packet-autocorrelation function method for traffic flow pattern analysis. Comput Aided Civ Infrastruct Eng 19:324–337

    Article  Google Scholar 

  • Kaumann O, Froese K, Chrobok R, Wahle J, Neubert L, Schreckenberg M (2000) Online simulation of the freeway network of NRW. In: Helbing D, Hermann HJ, Schreckenberg M, Wolf DE (eds) Traffic and granular flow ’99. Springer, Berlin Heidelberg, pp 351–356

    Google Scholar 

  • Kaysi I, Ben-Akiva M, Koutsopoulos H (1993) An integrated approach to vehicle routing and congestion prediction for real-time driver guidance. Transp Res Rec 1408:66–74

    Google Scholar 

  • Kerner BS (1998) Experimental features of self-organization in traffic flow. Phys Rev Lett 81:3797

    Article  MATH  Google Scholar 

  • Kerner BS (1999a) Traffic prediction method for road network with traffic controlled network nodes. German Patent DE 199 40 957 C2. (in German)

    Google Scholar 

  • Kerner BS (1999b) Method for monitoring the condition of traffic for a traffic network comprising effective narrow points. German Patent DE 199 44 075 C2, USA Patent: US6813555B1; Japan Patent: JP 2002117481

    Google Scholar 

  • Kerner BS (1999c) Congested traffic flow: observations and theory. Transp Res Rec 1678:160–167

    Article  Google Scholar 

  • Kerner BS (1999d) Theory of congested traffic flow: self-organization without bottlenecks. In: 14th international symposium on transportation and traffic theory. Jerusalem, Israel, pp 147–171

    Google Scholar 

  • Kerner BS (2002) Empirical macroscopic features of spatial-temporal traffic patterns at highway bottlenecks. Phys Rev E 65:046138

    Article  Google Scholar 

  • Kerner BS (2004) The physics of traffic. Springer, Berlin/New York

    Book  Google Scholar 

  • Kerner BS (2007) On-ramp metering based on three-phase traffic theory. Traffic Eng Control 48(1):28–35

    Google Scholar 

  • Kerner BS (2008) Modelling approaches to traffic congestion. This encyclopaedia. Springer, New York

    Google Scholar 

  • Kerner BS (2009) Introduction to modern traffic flow theory and control. Springer, Berlin/New York

    Book  MATH  Google Scholar 

  • Kerner BS (2014) Cumulated vehicle acceleration. Traffic Eng Control 55(4):139–141

    Google Scholar 

  • Kerner BS (2017) Breakdown in traffic networks: fundamentals of transportation science. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kerner BS, Herrtwich RGH (2001) Traffic forecasting. Automatisierungstechnik 49:505–511

    Article  Google Scholar 

  • Kerner BS, Klenov SL (2002) A microscopic model for phase transitions in traffic flow. J Phys A Math Gen 35(3):L31–L43

    Article  MathSciNet  MATH  Google Scholar 

  • Kerner BS, Klenov SL (2003) A microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks. Phys Rev E 68(3):036130

    Article  Google Scholar 

  • Kerner BS, Klenov SL (2006) Deterministic microscopic three-phase traffic flow models. J Phys A Math Gen 39:1775–1809

    Article  MathSciNet  MATH  Google Scholar 

  • Kerner BS, Konhäuser P (1994) Structure and parameters of clusters in traffic flow. Phys Rev E 50(1):54

    Article  Google Scholar 

  • Kerner BS, Rehborn H (1996a) Experimental properties of complexity in traffic flow. Phys Rev E 53:R4257

    Article  Google Scholar 

  • Kerner BS, Rehborn H (1996b) Experimental features and characteristics of traffic jams. Phys Rev E 53:1297

    Article  Google Scholar 

  • Kerner BS, Rehborn H (1997) Experimental properties of phase transitions in traffic flow. Phys Rev Lett 79:4030

    Article  Google Scholar 

  • Kerner BS, Rehborn H (1998) Traffic surveillance method and vehicle flow control in a road network. German Patent Publication DE 198 35 979 A1, USA Patent: US 6587779B1

    Google Scholar 

  • Kerner BS, Rehborn H, Kirschfink H (1998) Method for the automatic monitoring of traffic including the analysis of back-up dynamics. German Patent DE 196 47 127 C2, Dutch Patent: NL1007521C, USA Patent US 5861820

    Google Scholar 

  • Kerner BS, Aleksic M, Denneler U (1999) Traffic condition supervision in traffic network, undertaking inquiry of current position and/or prognosis of future position of flank between area of free traffic and area of synchronized traffic continuously. German Patent DE 199 44 077 C1

    Google Scholar 

  • Kerner BS, Rehborn H, Aleksic M, Haug A (2004) Recognition and tracing of spatial-temporal congested traffic patterns on freeways. Transp Res C 12:369–400

    Article  Google Scholar 

  • Kerner BS, Rehborn H, Haug A, Aleksic M (2005) Traffic prediction in vehicles. In: Proceedings 8th IEEE conference on intelligent transportation systems, Vienna, pp 251–256

    Google Scholar 

  • Kerner BS, Rehborn H, Palmer J, Klenov SL (2011) Using probe vehicle data to generate jam warning messages. Traffic Eng Control 3:141–148

    Google Scholar 

  • Kerner BS, Klenov SL, Hermanns G, Hemmerle P, Rehborn H, Schreckenberg M (2013a) Synchronized flow in oversaturated city traffic. Phys Rev E 88(5):054801

    Article  Google Scholar 

  • Kerner BS, Rehborn H, Schäfer RP, Klenov SL, Palmer J, Lorkowski S, Witte N (2013b) Traffic dynamics in empirical probe vehicle data studied with three-phase theory: spatiotemporal reconstruction of traffic phases and generation of jam warning messages. Phys A Stat Mech Appl 392(1):221–251

    Article  Google Scholar 

  • Kerner BS, Hemmerle P, Koller M, Hermanns G, Klenov SL, Rehborn H, Schreckenberg M (2014) Empirical synchronized flow in oversaturated city traffic. Phys Rev E 90(3):032810

    Article  Google Scholar 

  • Kirby HR, Watson SM, Dougherty MS (1997) Should we use neural networks or statistical models for short-term motorway traffic forecasting? Int J Forecast 13:43–50

    Article  Google Scholar 

  • Kirschfink H (1999) Collective traffic control in motorways. Tutorial at the 11th EURO-mini conference on AI in transportation systems and science, Helsinki

    Google Scholar 

  • Kirschfink H, Hernández J, Boero M (2000) Intelligent traffic management models. In: Proceedings of the European symposium on intelligent techniques (ESIT). Helsinki, Finland

    Google Scholar 

  • Kisgyorgy L, Rilett LR (2002) Travel time prediction by advanced neural network. Period Polytech Ser Civ Eng 46(1):15–32

    Google Scholar 

  • Kitamura K, Kuwahara M (eds) (2005) Simulation approaches in transportation analysis: recent advances and challenges. Operations research/computer science interfaces series, vol 31. Springer, US

    Google Scholar 

  • Kniss HC (2000) Evaluation of ASDA/FOTO in traffic control centre Hessen (internal report, in German)

    Google Scholar 

  • Koller M, Hemmerle P, Rehborn H, Hermanns G, Kerner BS, Schreckenberg M (2014) Increased consumption in synchronized flow in oversaturated city traffic. In: 10th ITS European congress, Helsinki, proceedings

    Google Scholar 

  • Koller M, Hemmerle P, Rehborn H, Kerner BS, Kaufmann S (2016) Traffic phase dependent fuel consumption. In: Knoop V, Daamen W (eds) Traffic and granular flow ’15. Springer, Cham

    Google Scholar 

  • Koshi M, Iwasaki M, Ohkura I (1983) Some findings and an overview on vehicular flow characteristics. In: Proceedings 8th international symposium on transportation and traffic theory. Toronto, Canada, p 403

    Google Scholar 

  • Kuchipudi CM, Chien SIJ (2003) Development of a hybrid model for dynamic travel time prediction. In: 82nd annual meeting Transportation Research Board, Washington, DC

    Google Scholar 

  • Kwon J, Coifman B, Bickel P (2000) Day-to-day travel-time trends and travel-time prediction from loop-detector data. Transp Res Rec 1717:120–129

    Article  Google Scholar 

  • Lan CJ, Miaou SP (1999) Real-time prediction of traffic flows using dynamic generalized linear models. Transp Res Rec 1678:168–178

    Article  Google Scholar 

  • Lee S, Kim D, Kim J, Cho B (1998) Comparison of models for predicting short-term travel speeds. In: 5th world congress on intelligent transport systems, Seoul

    Google Scholar 

  • Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, Berlin

    Book  Google Scholar 

  • Lieu HC (2000) Traffic estimation and prediction system. Transp Res News 208:3–6

    Google Scholar 

  • Lindveld CDR, Thijs R, Bovy PHL, Van der Zijpp NJ (2000) Evaluation of online travel time estimators and predictors. Transp Res Rec 1719:45–53

    Article  Google Scholar 

  • Lingras P, Sharma S, Zhong M (2002) Prediction of recreational travel using genetically designed regression and time-delay neural network models. Transp Res Rec 1805:16–24

    Article  Google Scholar 

  • Lu J (1990) Prediction of traffic flow by an adaptive prediction system. Transp Res Rec 1287:13–20

    Google Scholar 

  • Maerivoet S, De Moor B (2005) Cellular automata models of road traffic. Phys Rep 419:1–64

    Article  MathSciNet  Google Scholar 

  • Matsui H, Fujita M (1998) Travel time prediction for freeway traffic information by neural network driven fuzzy reasoning. In: Himanen V, Nijkamp P, Reggiani A, Raito J (eds) Neural networks in transport applications. Ashgate Publishers, Burlington, pp 355–364

    Google Scholar 

  • May AD (1990) Traffic flow fundamentals. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Middelham F (2001) Predictability: some thoughts on modelling. Futur Gener Comput Syst 17(5):627–636

    Article  Google Scholar 

  • Miyata S, Noda M, Usami T (1995) STREA. In: Proceedings of the 2nd world congress on intelligent transport systems, Yokohama, vol 1, pp 289–297

    Google Scholar 

  • Moorthy CK, Ratcliffe BG (1998). Short term traffic forecasting using time series methods. Transp Plan Technol 12(1):45–56

    Google Scholar 

  • Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I Fr 2:2221–2229

    Article  Google Scholar 

  • Nam DH, Drew DR (1996) Traffic dynamics: method for estimating freeway travel times in real time from flow measurements. J Transp Eng 122(3):186–191

    Article  Google Scholar 

  • Nanthawichit C, Nakatsuji T, Suzuki H (2003) Application of probe vehicle data for real-time traffic state estimation and short term travel time prediction on a freeway. In: Proceedings 82nd annual meeting Transportation Research Board, Washington, DC

    Google Scholar 

  • Newell GF (1965) Approximation methods for queues with application to the fixed-cycle traffic light. SIAM Rev 7(2):223–240

    Article  MathSciNet  MATH  Google Scholar 

  • Newell GF (1982) Applications of queuing theory. Chapman & Hall, London

    Book  Google Scholar 

  • Nicholson H, Swann CD (1974) The prediction of traffic flow volumes based on spectral analysis. Transp Res 8:533–538

    Article  Google Scholar 

  • Nihan NL, Holmesland KO (1980) Use of the Box and Jenkins time series technique in traffic forecasting. Transportation 9:125–14372

    Article  Google Scholar 

  • Nikovski D, Nishiuma N, Goto Y, Kumazawa H (2005) Univariate short-term prediction of road travel times. In: International IEEE conference on intelligent transportation systems (ITSC), Vienna

    Google Scholar 

  • Ober-Sundermeier A, Zackor H (2001) Prediction of congestion due to road works on freeways. In: Proceedings IEEE intelligent transportation systems, Oakland, pp 240–244

    Google Scholar 

  • Oda T (1990) An algorithm for prediction of travel time using vehicle sensor data. In: IEEE 3rd international conference on road traffic control. London, pp 40–44

    Google Scholar 

  • Oh C, Ritchie SG, Oh JS (2005) Exploring the relationship between data aggregation and predictability toward providing better predictive traffic information. Transp Res Rec 1935:28–36

    Article  Google Scholar 

  • Ohba Y, Koyama T, Shimada S (1997) Online learning type of travelling time prediction model in expressway. In: IEEE conference on intelligent transport systems, Boston, pp 350–355

    Google Scholar 

  • Okutani I, Stephanedes YI (1984) Dynamic prediction of traffic volume through Kalman filtering theory. Transp Res B 18B(1):1–11

    Article  Google Scholar 

  • Palmer J, Rehborn H (2008) ASDA/FOTO based on Kerner’s three-phase traffic theory in North-Rhine Westfalia. Straßenverkehrstechnik. (in German) 8:463–470

    Google Scholar 

  • Pancratz A (1991) Forecasting with dynamic regression models. Wiley-InterScience, New York

    Book  Google Scholar 

  • Papageorgiou M (1983) Application of automatic control concepts in traffic flow modelling and control. Springer, Berlin/New York

    Book  MATH  Google Scholar 

  • Park B, Messer CJ, Urbanik T II (1998) Short term traffic volume forecasting using radial basis function neural network. Transp Res Rec 1651:39–47

    Article  Google Scholar 

  • Park DJ, Rilett LR, Han G (1999) Spectral basis neural networks for real-time travel time forecasting. J Transp Eng 125(6):515–523

    Article  Google Scholar 

  • Petty KF, Bickel P, Ostland M, Rice J, Schoenberg F, Jiang J, Ritov Y (1998) Accurate estimation of travel times from single loop detectors. Transp Res A 32(1):1–17

    Article  Google Scholar 

  • Pinkofsky L (2002) Types of time series. In: Verkehrsentwicklung auf Bundesfernstraßen 2002. Bericht der Bundesanstalt für Straßenwesen, Reihe Verkehrstechnik, vol V99. Bergisch Gladbach. Bundesanstalt für Straßenwesen (BASt) (in German)

    Google Scholar 

  • Qiao F, Wang X, Yu L (2003) Optimizing aggregation level for ITS data based on wavelet decomposition. In: Proceedings 82nd annual meeting Transportation Research Board. National Academies Press, Washington, DC

    Google Scholar 

  • Rakha H, Crowther B (2003) Comparison and calibration of FRESIM and INTEGRATION steady-state car-following behaviour. Transp Res A 37:1–27

    Article  Google Scholar 

  • Ran R, Boyce D (1996) Modelling dynamic transportation networks. Springer, Berlin

    Book  MATH  Google Scholar 

  • Rehborn H, Haug A, Aleksic M, Kerner BS, Fastenrath U (2002) Statistical analysis of traffic message archives as decision support for road construction up to traffic management. Straßenverkehrstechnik 9:478–485. (in German)

    Google Scholar 

  • Rehborn H, Haug A, Kerner BS, Aleksic M, Fastenrath U (2003) Floating car data and methods for recognition and tracking of spatiotemporal traffic patterns. Straßenverkehrstechnik 9:461–468. (in German)

    Google Scholar 

  • Rehborn H, Klenov SL, Palmer J (2011) An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany. Phys A Stat Mech Appl 390(23):4466–4485

    Article  Google Scholar 

  • Rice J, Van Zwet E (2001) A simple and effective method for predicting travel times on freeways. In: Proceedings of the IEEE conference on intelligent transportation systems, Oakland, pp 227–232

    Google Scholar 

  • Riegelhuth G, Kirschfink H (2003) Management with decision support of road works for traffic flow optimization on freeways. In: Proceedings of ITS world congress, paper no. 2255T

    Google Scholar 

  • Rilett LR, Park D (2001) Direct forecasting of freeway corridor travel times using spectral basis neural networks. Transp Res Rec 1752:140–147

    Article  Google Scholar 

  • Robertson DI (1969) TRANSYT: a traffic network study tool. TRRL report no. LR 253, Transportation and Road Research Laboratory, Crowthorne

    Google Scholar 

  • Rumelhart DE, McClelland JL (1986) Parallel distributed processing: exploration in the microstructure of cognition. MIT Press, Cambridge, MA

    Google Scholar 

  • Schönhof M, Helbing D (2007) Empirical features of congested traffic states and their implications for traffic modeling. Transp Sci 41(2):135–166

    Article  Google Scholar 

  • Schrader CC, Kornhauser AL, Friese LM (2004) Using historical information in forecasting travel times. In: 82nd annual meeting Transportation Research Board. National Academies Press, Washington, DC

    Google Scholar 

  • Smith BL, Demetsky MJ (1994) Short term traffic flow prediction: neural network approach. Transp Res Rec 1453:98–104

    Google Scholar 

  • Smith BL, Demetsky MJ (1997) Traffic flow forecasting: comparison of modeling approaches. J Transp Eng 123(4):261–266

    Article  Google Scholar 

  • Smith BL, Oswald KR (2003) Meeting real-time traffic flow forecasting requirements with imprecise computations. Comput Aided Civ Infrastruct Eng 18:201–213

    Article  Google Scholar 

  • Smith BL, Williams BM, Oswald KR (2002) Comparison of parametric and non-parametric models for traffic flow forecasting. Transp Res C 10(4):303–321

    Article  Google Scholar 

  • Stathopoulos A, Karlaftis MG (2003) A multivariate state-space approach for urban traffic flow modeling and prediction. Transp Res C 11:121–135

    Article  Google Scholar 

  • Sun H, Liu HX, Xiao H, He RR, Ran B (2003) Short-term traffic forecasting using the local linear regression model. J Transp Res Board 1836:143–150

    Article  Google Scholar 

  • Sun H, Xiao HX, Yang F, Ran B, Tao Y, Oh Y (2004) Wavelet preprocessing for local linear traffic prediction. In: 83rd Transportation Research Board annual meeting, Washington, DC

    Google Scholar 

  • Teng H, Qi Y (2003) Application of wavelet technique to freeway incident detection. Transp Res C 11(3–4):289

    Article  Google Scholar 

  • Traffic Flow Theory 2006 (2006) Monograph with 22 papers on the subject of traffic flow theory. Transportation Research Record 1965. Transportation Research Board, Washington

    Google Scholar 

  • Treiterer J (1975) Investigations of traffic dynamics by aerial photogrammetry. Ohio State University Technical Report PB 246 094, Columbus

    Google Scholar 

  • Van der Voort M, Dougherty M, Watson S (1996) Combining KOHONEN maps with ARIMA time series models to forecast traffic flow. Transp Res C 4:307–318

    Article  Google Scholar 

  • Van Lint JWC, Van der Zijpp NJ (2003) Improving a travel time estimation algorithm by using dual loop detectors. Transp Res Rec 1855:41–48

    Article  Google Scholar 

  • Van Lint JWC, Hoogendoorn P, Van Zuylen HJ (2002) Freeway travel time prediction with state-space neural networks-modeling state-space dynamics with recurrent neural networks. Transp Res Rec 1811:30–39

    Article  MATH  Google Scholar 

  • Venkatanarayana R, Smith BL, Demetsky MJ (2005) Traffic pattern identification using wavelets transforms. In: 84th Transportation Research Board annual meeting, Washington, DC

    Google Scholar 

  • Vlahogianni EI, Golias JC, Karlaftis MG (2004) Short-term traffic forecasting: overview of objectives and methods. Transp Rev 24(5):533–557

    Article  Google Scholar 

  • Vlahogianni EI, Karlaftis MG, Golias JC (2006) Statistical methods for detecting non-linearity and non-stationarity in univariate short-term time-series of traffic volume. Transp Res C 14(5):351–367

    Article  Google Scholar 

  • Wahle J, Bazzan A, Klügl F, Schreckenberg M (2000) Anticipatory traffic forecast using multi-agent techniques. In: Helbing D, Hermann HJ, Schreckenberg M, Wolf DE (eds) Traffic and granular flow ’99. Springer, Berlin Heidelberg, pp 87–92

    Google Scholar 

  • Wang Y, Papageorgiou M (2005) Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transp Res B 39:141–167

    Article  Google Scholar 

  • Webster FV (1958) Traffic signal settings. Road Research Laboratory technical paper no. 39

    Google Scholar 

  • Whitham G (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  • Wiedemann R (1974) Simulation of traffic flow. Schriftenreihe des Instituts für Verkehrswesen der Universität Karlsruhe, Heft 8. (in German)

    Google Scholar 

  • Wild D (1997) Short-term forecasting based on a transformation and classification of traffic volume time series. Int J Forecast 13:63–72

    Article  Google Scholar 

  • Williams BM (2001) Multivariate vehicular traffic flow prediction: an evaluation of ARIMAX modeling. Transp Res Rec 1776:194–200

    Article  Google Scholar 

  • Williams BM, Hoel LA (2003) Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J Transp Eng 129(6):664–672

    Article  Google Scholar 

  • Williams JC, Mahmassani HS, Herman R (1987) Urban network flow models. Transp Res Rec 1112:78–88

    Google Scholar 

  • Xiao H, Sun H, Ran B, Oh Y (2003) Fuzzy-neural network traffic prediction with wavelet decomposition. Transp Res Rec 1836:16–20

    Article  Google Scholar 

  • Yang F, Sun H, Tao Y, Ran B (2004a) Temporal difference learning with recurrent neural network in multi-step ahead freeway speed prediction. In: 83rd Transportation Research Board annual meeting, Washington, DC

    Google Scholar 

  • Yang F, Lin Z, Liu HX, Ran B (2004b) Online recursive algorithm for short-term traffic prediction. Transp Res Rec 1879:1–9

    Article  Google Scholar 

  • Yasdi R (1999) Prediction of road traffic using a neural network. Neural Comput Appl 8:135–142. Springer

    Article  Google Scholar 

  • Yin H, Wong SC, Xu J (2002) Urban traffic prediction using a fuzzy-neural approach. Transp Res C 10:85–98

    Article  Google Scholar 

  • Zhang HM (2000) Recursive prediction of traffic conditions with neural networks. J Transp Eng 126(6):472–481

    Article  Google Scholar 

  • Zhang X, Rice J (2003) Short term travel time prediction. Transp Res C 11:187–210

    Article  Google Scholar 

  • Zhang G, Patuwo E, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62

    Article  Google Scholar 

  • Zwahlen HT, Russ A (2002) Evaluation of the accuracy of a real-time travel time prediction system in a freeway construction work zone. Transp Res Rec 1803:87–93

    Article  Google Scholar 

Books and Reviews

  • Kalman R (1960) A new approach to linear filtering and prediction problems. ASME Basic Eng J 82(1):35–45

    Google Scholar 

  • Kants H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rehborn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rehborn, H., Klenov, S.L., Koller, M. (2019). Traffic Prediction of Congested Patterns. In: Kerner, B. (eds) Complex Dynamics of Traffic Management. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8763-4_564

Download citation

Publish with us

Policies and ethics