Skip to main content

Phenotyping: New Crop Breeding Frontier

  • Reference work entry
  • First Online:
Book cover Crop Science
  • Originally published in

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Reynolds MP, Braun HJ, Cavalieri AJ, Chapotin S, Davies WJ, Ellul P, Feuillet C, Govaerts B, Kropff MJ, Lucas H, Nelson J (2017) Improving global integration of crop research. Science 357:359–360

    Article  CAS  Google Scholar 

  2. Abera Desta Z, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  Google Scholar 

  3. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  Google Scholar 

  4. Araus JL, Kefauver SC, Zaman-Allah MA, Olsen MS, Cairns JE (2018) Translating high throughput phenotyping into genetic gain. Trends Plant Sci 1647. https://doi.org/10.1016/j.tplants.2018.02.001

  5. Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Luis Araus J (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  Google Scholar 

  6. Weber VS, Araus JL, Cairns JE, Sanchez C, Melchinger AE, Orsini E (2012a) Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crop Res 128:82–90

    Article  Google Scholar 

  7. Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  8. Fernandez-Gallego JA, Aparicio-Gutierrez N, Nieto-Taladriz MT, Araus JL, Kefauver SK. Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images. Plant Methods 14:22

    Google Scholar 

  9. Zhou C, Liang D, Yang X, Xu B, Yang G (2018) Recognition of wheat spike from field based phenotype platform using multi-sensor fusion and improved maximum entropy segmentation algorithms. Remote Sens 10:246. https://doi.org/10.3390/rs10020246 (registering DOI)

    Article  Google Scholar 

  10. Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Eeuwijk FV, Tardieu F (2016) Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol 172:749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pauli D, Chapman SC, Bart R, Topp CN, Lawrence-Dill CJ, Poland J, Gore MA (2016) The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiol 172:622–634

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Passioura JB, Angus JF (2010) Improving productivity of crops in water-limited environments. Adv Agron 106:37–75

    Article  Google Scholar 

  13. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, Essex, 464 pp

    Google Scholar 

  14. Li H, Rasheed A, Hickey LT, He Z (2018) Spotlight fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Google Scholar 

  15. Masuka B, Atlin GN, Olsen M, Magorokosho C, Labuschagne M, Crossa J, Bänziger M, Pixley KV, Vivek BS, von Biljon A, Macrobert J (2017) Gains in maize genetic improvement in Eastern and Southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Sci 57:168–179

    Article  Google Scholar 

  16. Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666

    Article  CAS  Google Scholar 

  17. Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192

    Article  Google Scholar 

  18. Chaikam V, Lopez LA, Martinez L, Burgeño J, Prasanna BM (2017) Identification of in vivo induced maternal haploids in maize using seedling traits. Euphytica 213:177

    Article  Google Scholar 

  19. Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371

    Article  Google Scholar 

  20. Deery DM, Rebetzke GJ, Jimenez-Berni JA, James RA, Condon AG, Bovill WD, Hutchinson P, Scarrow J, Davy R, Furbank RT (2016) Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front Plant Sci 7:1808

    Article  Google Scholar 

  21. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  Google Scholar 

  22. Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  Google Scholar 

  23. Berni JAJ, Zarco-Tejada PJ, Suarez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47:722–738

    Article  Google Scholar 

  24. Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR (2017) Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J Exp Bot. https://doi.org/10.1093/jxb/erx421

  25. Elazab A, Ordóñez RA, Savin R, Slafer GA, Araus JL (2016) Detecting interactive effects of N fertilization and heat stress on maize productivity by remote sensing techniques. Eur J Agron 73:11–24

    Article  CAS  Google Scholar 

  26. Gracia-Romero A, Kefauver SC, Vergara-Díaz O, Zaman-Allah MA, Prasanna BM, Cairns JE, Araus JL (2017) Comparative performance of ground vs. aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front Plant Sci 8:2004

    Article  Google Scholar 

  27. Kefauver SC, Vicente R, Vergara-Díaz O, Fernandez-Gallego JA, Kerfal S, Lopez A, Melichar JPE, Serret Molins MD, Araus JL (2017) Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front Plant Sci 8:1733

    Article  Google Scholar 

  28. Gracia-Romero A, Vergara-Díaz O, Thierfelder C, Cairns JE, Kefauver SC, Araus JL (2018) Phenotyping conservation agriculture management effects on ground and aerial remote sensing assessments of maize hybrids performance in Zimbabwe. Remote Sens 10:349

    Google Scholar 

  29. Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles NR, Pavek MJ (2015) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agron 70:112–123

    Article  Google Scholar 

  30. Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4:349–379

    Article  Google Scholar 

  31. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  Google Scholar 

  32. Jin X, Liu S, Baret F, Hemerlé M, Comar A (2017) Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens Env 2198:105–114

    Article  Google Scholar 

  33. Makanza R, Zaman-Allah M, Cairns JE, Magorokosho C, Tarekegne A, Olsen M, Prasanna BM (2018) High-throughput phenotyping of canopy cover and senescence in maize field trials using aerial digital canopy imaging. Remote Sens 10:330

    Google Scholar 

  34. Cabrera-Bosquet L, Sanchez C, Rosales A, Palacios-Rojas N, Araus JL (2010) Near-Infrared Reflectance Spectroscopy (NIRS) Assessment of δ18O and nitrogen and ash contents for improved yield potential and drought adaptation in maize. J Agric Food Chem 59:467–474

    Article  Google Scholar 

  35. White JW, Conley MM (2013) A flexible, low-cost cart for proximal sensing. Crop Sci 53:1646–1649

    Article  Google Scholar 

  36. Kim J, Lee S, Ahn H, Seo D, Park S, Choi C (2013) Feasibility of employing a smartphone as the payload in a photogrammetric UAV system. ISPRS J Photogramm Remote Sens 79:1–18

    Article  Google Scholar 

  37. Araus JL, Kefauver SC. Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Curr Opin Plant Biol (second revision)

    Google Scholar 

  38. Gago J, Douthe C, Coopman R, Gallego P, Ribas-Carbo M, Flexas J, Escalona J, Medrano H (2015) UAVs challenge to assess water stress for sustainable agriculture. Agric Water Manag 153:9–19

    Article  Google Scholar 

  39. Krishna KR (2017) Agricultural drones: a peaceful pursuit. APP (Apple Academic Press)/CRC Press (Taylor and Francis Group), Boca Raton, 425 pages. ISBN 9781771885959

    Google Scholar 

  40. Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  Google Scholar 

  41. Zaman-Allah M, Vergara O, Araus JL, Tarekegne A, Magorokosho C, Zarco-Tejada PJ, Hornero A, Albà AH, Das B, Craufurd P, Olsen M (2015) Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 11:35

    Article  CAS  Google Scholar 

  42. Cairns JE, Hellin J, Sonder K, Araus JL, MacRobert JF, Thierfelder C, Prasanna BM (2013) Adapting maize production to climate change in sub-Saharan Africa. Food Sec 5:345–360

    Article  Google Scholar 

  43. Weber VS, Melchinger AE, Magorokosho C, Makumbi D, Bänziger M, Atlin GN (2012b) Efficiency of managed-stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in Southern Africa. Crop Sci 52:1011–1020

    Article  Google Scholar 

  44. Rebetzke GJ, Chenu K, Biddulph B, Moeller C, Deery DM, Rattey AR, Bennett D, Barrett-Lennard EG, Mayer JE (2013) A multisite managed environment facility for targeted trait and germplasm phenotyping. Funct Plant Biol 40(1):13

    Google Scholar 

  45. Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ 38:1765–1774

    Article  Google Scholar 

  46. Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311–336

    Article  CAS  Google Scholar 

  47. Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    Article  CAS  Google Scholar 

  48. Federer WT, Crossa J (2012) I.4 screening experimental designs for quantitative trait loci, association mapping, genotype-by environment interaction, and other investigations. Front Physiol 3:156

    Google Scholar 

  49. Jin Z, Zhuang Q, Tan Z, Dukes JS, Zheng B, Melillo JM (2016) Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology 22(9):3112–3126

    Google Scholar 

Download references

Acknowledgments

This review chapter was supported by grants from the CGIAR Research Program MAIZE (to J.L.A., S.C.K., J.E.C. and M.Z-A.), the Spanish project AGL2016-76527-R (to J.L.A. and S.C.K.), the Bill & Melinda Gates Foundation and USAID funded Stress Tolerant Maize for Africa project (J.E.C., M.Z.A., M.S.O) and the CGIAR Excellence in Breeding Platform (J.E.C. M.Z.A, and M.S.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Araus .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Araus, J.L., Kefauver, S.C., Zaman-Allah, M., Olsen, M.S., Cairns, J.E. (2019). Phenotyping: New Crop Breeding Frontier. In: Savin, R., Slafer, G. (eds) Crop Science. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8621-7_1036

Download citation

Publish with us

Policies and ethics