Skip to main content

WTE: Combustion Phenomena on Moving Grate

  • Reference work entry
  • First Online:
Recovery of Materials and Energy from Urban Wastes
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

AD:

Anaerobic digestion

CFD:

Computational fluid dynamics

CHP:

Combined heat and power

CHP/DHC:

Combined heat and power/district heating and cooling

CV:

Calorific value

DEFRA:

Department of Environment Food and Rural Affairs

DHC:

District heating and cooling

DVC:

Depolymerization-vaporization-cross-linking model

EfW:

Energy-from-waste

EU:

European Union

FG:

Functional group

FG-DVC:

Functional group model and a depolymerization-vaporization-cross-linking model

GJ:

Gigajoule

kWh:

Kilowatt hours

kWh:

Kilowatt heat

MBT:

Mechanical biological treatment

MSW:

Municipal solid waste

MRF:

Material recovery facility

MW:

Megawatt

NO:

Nitric oxide

NOx:

Nitrogen oxides

PCDD/Fs:

Polychlorinated dibenzo-dioxins and furans

RDF:

Refuse-derived fuel

ROC:

Renewable Obligation Certificate

SRF:

Solid-recovered fuel

TEQ:

Toxic equivalent

TGA:

Thermogravimetric analysis

WID:

Waste WTE directive

WTE:

Waste-to-energy

Definition of the Subject

Historically, waste materials from cities were simply dumped...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Particle surface area, m2m−3

Ar :

Pre-exponent factor in char burning rate, kgm−2s−1

Av :

Pre-exponent factor in devolatilization rate, s−1

C :

Constant; molar fractions of species

C fuel :

Fuel concentration, kgm−3

C pg :

Specific heat capacity of the gas mixture, Jkg−1K−1

C mix :

Mixing rate constant, 0.5

C w,g :

Moisture mass fraction in the gas phase

C w,s :

Moisture mass fraction at the solid surface

D ig :

Dispersion coefficients of the species Y i, m2s−1

d p :

Particle diameter, m

E b :

Black body emission, Wm−2

E r :

Activation energy in char burning rate, Jkmol−1

Ev :

Activation energy in devolatilization rate, Jkmol−1

E0:

Effective diffusion coefficient

H evp :

Evaporation heat of the solid material, Jkg−1

H g :

Gas enthalpy, Jkg−1

H s :

Solid-phase enthalpy, Jkg−1

h s :

Convective mass transfer coefficient between solid and gas, kgm−2s−1

hs ′ :

Convective heat transfer coefficient between solid and gas, Wm−2K−1

Ix+ :

Radiation flux in positive x direction, Wm−2

Ix − :

Radiation flux in negative x direction, Wm−2

k a :

Radiation absorption coefficient, m−1

k d :

Rate constants of char burning due to diffusion, kgm−2s−1

k r :

Rate constants of char burning due to chemical kinetics, kgm−2s−1

k v :

Rate constant of devolatilization, s−1

k s :

Radiation scattering coefficient, m−1

p g :

Gas pressure, Pa

Q h :

Heat loss/gain of the gases, Wm−3

Qsh:

Thermal source term for solid phase, Wm−3

q r :

Radiative heat flux, Wm−2

R :

Universal gas constant; process rate, kgm−3s−1

R mix :

Mixing rate of gaseous phase in the bed, kgm−3s−1

S :

Stoichiometric coefficients in reactions

S sg :

Conversion rate from solid to gases due to evaporation, devolatilization, and char burning, kgm−3s−1

Sy ig :

Mass sources due to evaporation, devolatilization, and combustion, kgm−3s−1

Sy is :

Source term, kgm−3s−1

t :

Time instant, s

T :

Temperature, K

U :

x velocity, ms−1

V :

y velocity, ms−1

VM:

Volatile matter in fuel, wt%

x :

Coordinate in bed forward-moving direction, m

y :

Coordinate in bed height direction, m

Y ig :

Mass fractions of individual species (e.g., H2, H2O, CO, CO2, CmHn, etc.)

Y is :

Mass fractions of particle compositions (moisture, volatile, fixed carbon, and ash)

ε s :

System emissivity

σ b :

Stefan-Boltzmann constant, 5.86 × 10−8 Wm−2K−4

Ï… :

Remaining volatile in solid at time, t

υ∞ :

Ultimate yield of volatile

Φ:

Void fraction in the bed

λ g :

Thermal dispersion coefficient, Wm−1K−1

λ g 0 :

Effective thermal diffusion coefficient, Wm−1K−1

λ s :

Effective thermal conductivity of the solid bed, Wm−1K−1

env:

Environmental

g:

Gas phase

i:

Identifier for a component in the solid

p:

Particle

s:

Solid phase

Bibliography

  1. DEFRA (2004) Review of environmental and health effects of waste management: municipal solid waste and similar wastes. London. Available from http://www.defra.gov.uk/ENVIRONMENT/waste/research/health/

  2. http://www.ref-fuel.com.technology.htm

  3. Department of Environment, Food and Rural Affairs (DEFRA) (2007) Municipal waste management statistics. London. Available from http://www.defra.gov.uk/environment/statistics/wastets/index.htm

  4. Yang YB, Goh YR, Zakaria R, Nasserzadeh V, Swithenbank J (2001) Mathematical modelling of MSW incineration, IT3-2001, Philadelphia

    Google Scholar 

  5. Goh YR, Siddall RG, Nasserzadeh V, Zakaria R, Swithenbank J, Lawrence D, Garrod N, Jones B (1998) Mathematical modeling of the waste incinerator burning bed. J Inst Energy 71:110–118

    Google Scholar 

  6. Peters B (2003) Thermal conversion of solid fuels. WIT Press, Southampton

    Google Scholar 

  7. San SH, Lu A, Stewart DF, Connor MA, Fung PYH, Ng HS (2004) Tar levels in a stratified downdraft gasifier. Science in thermal and chemical biomass conversion. Victoria, pp 1–6, 30 Aug–2 Sept 2004

    Google Scholar 

  8. Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gorden & Breach, New York

    Google Scholar 

  9. Smoot LD, Pratt DT (1979) Pulverized-coal combustion and gasification. Plenum Press, New York

    Book  Google Scholar 

  10. Shin D, Choi S (2000) The combustion of simulated waste particles in a fixed bed. Combust Flame 121:167–180

    Article  Google Scholar 

  11. http://www.afrinc.com/products/fgdvc/default.htm

  12. Di Blasi C (1996) Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem Eng Sci 51(7):1121–1132

    Article  Google Scholar 

  13. Arther JA (1951) Reactions between carbon and oxygen. Trans Faraday Soc 47:164–178

    Article  Google Scholar 

  14. Howard JB, William GC, Fine DH (1973) Kinetics of carbon monoxide oxidation in postflame gases. In: Proceedings of the 14th symposium (international) on combustion, the Combustion Institute, Pittsburgh, pp 975–986

    Article  Google Scholar 

  15. Hautman AN, Dryer FL, Schlug KP, Glassman I (1981) A multiple-step overall kinetic mechanism for the oxidation of hydrocarbons. Combust Sci Technol 25:219

    Article  Google Scholar 

  16. Jones J, Williams A, Bridgeman T, Darvell L (2005) Modelling pyrolysis and modelling potassium release. EPSRC (UK) Supergen bio-energy consortium, annual researchers’ meeting, Stafford, 23–25 Nov 2005

    Google Scholar 

  17. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, DC/London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Switenbank .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Switenbank, J., Sharifi, V. (2019). WTE: Combustion Phenomena on Moving Grate. In: Themelis, N., Bourtsalas, A. (eds) Recovery of Materials and Energy from Urban Wastes. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7850-2_396

Download citation

Publish with us

Policies and ethics