Skip to main content

Proton Exchange Membrane Fuel Cells: High-Temperature, Low-Humidity Operation

  • Reference work entry
  • First Online:
  • 4388 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

Three-phase boundary:

Region in the electrode where protons from the ionomer, electrons from the electrically conducting Pt and/or carbon, and reactant gases meet.

Electrolyte membrane:

A solid polymer ion-conducting membrane used in the center of the fuel cell membrane electrode assembly. Fuel cell electrocatalyst A catalyst that catalyzes either the oxidation of the fuel or the reduction of oxygen in a fuel cell.

Equivalent weight:

A measure of the acid content of an ionomer in the units of grams of polymer per mole of acid. Gas diffusion layer A carbon paper or cloth used as a current collector in fuel cells that can allow the passage of reactant gases and product water to and from the electrodes.

Hydrogen oxidation reaction (HOR):

Electrochemical oxidation of H2 at the anode.

Ionomer:

A copolymer of an ion-containing monomer and a nonionic monomer, typically not soluble in water. Membrane electrode assembly (MEA) An ion-conducting membrane sandwiched between two...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

Primary Literature

  1. Houchins C, Kleen GJ, Spendelow JS, Kopasz J, Peterson D, Garland NL, Ho DL, Marcinkoski J, Martin KE, Tyler R, Papageorgopoulos DC (2012) U.S. DOE progress towards developing low-cost, high performance, durable polymer electrolyte membranes for fuel cell applications, Membranes, 2: pp. 855–878

    Google Scholar 

  2. Nonobe Y (2017) Development of the fuel cell vehicle mirai. Electron Eng IEEJ Trans Elec 12:5–9. https://doi.org/10.1002/tee.22328

    Article  Google Scholar 

  3. Hardman S, Chandan A, Shiu E, Steinberger-Wilckens R (2016) Consumer attitudes to fuel cell vehicles post trial in the United Kingdom. Int J Hydrog Energy 41(15):6171–6179

    Article  Google Scholar 

  4. Alaswad A, Baroutaji A, Achour H, Carton J, Makky AA, Olabi AG (2016) Developments in fuel cell technologies in the transport sector. Int J Hydrog Energy 41(37):16499–16508

    Article  Google Scholar 

  5. Yoshida T, Kojima K (2015) Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem Soc Interface 24(2):45–49

    Article  Google Scholar 

  6. Chen H, Cong NC, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage systems: a critical review. Prog Nat Sci 19:291–312

    Article  Google Scholar 

  7. Debe MK, Schmoeckel AK, Vernstrom GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161:1002–1011

    Article  Google Scholar 

  8. Wainwright JS, Litt MH, Savinell RF (2003) High temperature membranes. In: Vielstien W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 3. Wiley, West Sussex, pp 436–446

    Google Scholar 

  9. Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C (1994) A polymer electrolyte for operation at temperatures up to 200°C. J Electrochem Soc 141:L46–L48

    Article  Google Scholar 

  10. Mader J, Xiao L, Schmidt TJ, Benicewicz BC (2008) Polybenzimidazole/acid complexes as high-temperature membranes. Adv Polym Sci 216:63–124

    Google Scholar 

  11. Pinery M, Eisenberg A (1987) Structure and properties in ionomers, NATO advanced study institute series, vol 198. D. Reidel, Dordrecht

    Book  Google Scholar 

  12. Bazuin CG, Eisenberg A (1981) Ion-containing polymers: ionomers. J Chem Educ 58:938–943

    Article  Google Scholar 

  13. Laconti AB, Hamdan M, McDonald RC (2003) Mechanisms of membrane degradation. In: Vielstien W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 3. Wiley, West Sussex, pp 647–662

    Google Scholar 

  14. Doyle M, Rajendran G (2003) Perfluorinated membranes. In: Vielstien W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 3. Wiley, West Sussex, pp 351–395

    Google Scholar 

  15. Hamrock SJ, Yandrasits MA (2006) Proton exchange membranes for fuel cell applications. Polym Rev 46:219–244

    Google Scholar 

  16. Maritz KA, Moore RB (2004) The state of understanding of nafion. Chem Rev 104:4535–4585

    Article  Google Scholar 

  17. Kusoglu A, Weber AZ (2017) New insights into Perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104

    Article  Google Scholar 

  18. Mittelsteadt CK (2010) U.S. department of energy hydrogen program 2010 annual merit review proceedings. http://www.hydrogen.energy.gov/pdfs/review10/fc036_mittelsteadt_2010_o_web.pdf

  19. Paddison SJ, Paul R (2002) The nature of proton transport in fully hydrated nafion. Phys Chem Chem Phys 4:1158–1163

    Article  Google Scholar 

  20. Emery M, Frey M, Guerra M, Haugen G, Hintzer K, Lochhaas KH, Pham P, Pierpont D, Schaberg M, Thaler A, Yandrasits M, Hamrock S (2007) The development of new membranes for proton exchange membrane fuel cells. ECS Trans 11:3–14

    Article  Google Scholar 

  21. Yandrasits MA, Hamrock SJ (2010) Membranes for PEM fuel cells. In: Herring AM, Zawodzinski TA Jr, Hamrock SJ (eds) Fuel cell chemistry and operation. ACS symposium series. American Chemical Society, Washington, DC, pp 15–29

    Chapter  Google Scholar 

  22. Faure S, Cornet N, Gebel G, Mercier R, Pineri M, Sillion B (1997) Sulfonated polyimides as novel proton exchange membranes for H2/O2 fuel cells. In: Proceedings of the second international symposium on new materials for fuel cell and modern battery systems, Montreal, pp 818–825

    Google Scholar 

  23. Kreuer KD (1997, 2001) On the development of proton conducting materials polymer membranes for technological applications. Solid state Ionicsi 97:1–15; Hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Google Scholar 

  24. Noshay LM, Robeson J (1976) Sulfonated polysulfone. J Appl Polym Sci 20:1855–1903

    Article  Google Scholar 

  25. Guo Q, Pintauro PN, Tang H, O'Conner S (1999) Sulfonated and cross-linked polyphosphazene-based proton-exchange membranes. J Membr Sci 154:175–181

    Article  Google Scholar 

  26. Buchi FN, Gupta B, Halim J, Haas O, Scherer GG (1994) A new class of partially fluorinated fuel cell membranes. Proc Electrochem Soc 23:220–235

    Google Scholar 

  27. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEM’s). Chem Rev 104:4587–4612

    Article  Google Scholar 

  28. Sethuraman VA, Weidner JW, Haug AT, Protsailo LV (2008) Durability of perfluorosulfonic acid and hydrocarbon membranes: effect of humidity and temperature. J Electrochem Soc 155:B119–B124

    Article  Google Scholar 

  29. Kim YS, Pivovar BS (2009) Comparing proton conductivity of polymer electrolytes by percent conducting volume. ECS Trans 25:1425–1431

    Article  Google Scholar 

  30. King JF (1991) Acidity. In: Patai S, Rappoport Z (eds) The chemistry of sulphonic acids, esters and their derivatives. Wiley, New York, p 249

    Chapter  Google Scholar 

  31. Iley J (1991) Rearrangements. In: Patai S, Rappoport Z (eds) The chemistry of sulphonic acids, esters and their derivatives. Wiley, New York, p 453

    Chapter  Google Scholar 

  32. Schuster M, Kreuer KD, Andersen HT, Maier J (2007) Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers. Macromolecules 40:598–607

    Article  Google Scholar 

  33. Litt M, Granados-Focil S, Kang J (2008) Rigid rod polyelectrolytes with frozen-in free volume: high conductivity at low RH. In: Herring AM, Zawodzinski TA Jr, Hamrock SJ (eds) Fuel cell chemistry and operation. ACS symposium series American Chemical Society, Washington, DC, pp 49–63

    Google Scholar 

  34. de Araujo CC, Kreuer KD, Schuster M, Portale G, Mendil-Jakani H, Gebel G, Maier J (2009) Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features. Phys Chem Chem Phys 11:3305–3312

    Article  Google Scholar 

  35. Higashiharaa T, Matsumotoa K, Ueda M (2009) Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50:5341–5357

    Article  Google Scholar 

  36. Ghassemi H, McGrath JE, Zawodzinski TA (2006) Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell. Polymer 47:4132–4139

    Article  Google Scholar 

  37. Roy A, Hickner MA, Yu X, Li Y, Glass TE, McGrath JE (2006) Influence of chemical composition and sequence length on the transport properties of proton exchange membranes. J Polym Sci B Polym Phys 44:2226–2239

    Article  Google Scholar 

  38. Penner RM, Martin CR (1985) Ion transporting composite membranes. J Electrochem Soc 132:514–515

    Article  Google Scholar 

  39. Cleghorn S, Kolde J, Liu W (2003) Catalyst coated composite membranes. In: Vielstien W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 3. Wiley, West Sussex, pp 566–575

    Google Scholar 

  40. Tang Y, Kusoglu A, Karlsson AM, Santare MH, Cleghorn S, Johnson WB (2008) Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells. J Power Sources 175:817–825

    Article  Google Scholar 

  41. Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2008) Nanofiber network ion-exchange membranes. Macromolecules 41:4569–4572

    Article  Google Scholar 

  42. Pintauro P (2009) U.S. department of energy hydrogen program 2009 annual merit review proceedings. http://www.hydrogen.energy.gov/pdfs/review09/fc_09_pintauro.pdf

  43. Kerres JA (2005) Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–247

    Article  Google Scholar 

  44. Yang Y, Holdcroft S (2005) Synthetic strategies for controlling the morphology of proton conducting polymer membranes. Fuel Cells 5:171–186

    Article  Google Scholar 

  45. Hou H, Di Vona ML, Knauth P (2012) Building bridges: crosslinking of sulfonated aromatic polymers – a review. J Membr Sci 423(Supplement C):113–127

    Article  Google Scholar 

  46. Mao SS, Hamrock SJ, Ylitalo DA (2000) US Patent 6,090,895 crosslinked ion conductive membranes

    Google Scholar 

  47. Koppel IA, Taft RW, Anvia F, Zhu SZ, Hu LQ, Sung KS, DesMarteau DD, Yagupolskii LM, Yagupolski YL, Ignat'ev V, Kondratenko NV, Volkonskii AY, Slasov VM, Notario R, Maria PC (1994) The gas-phase acidities of very strong neutral Bronsted acids. J Am Chem Soc 116:3047–3057

    Article  Google Scholar 

  48. Gubler L, Gürsel SA, Scherer GG (2005) Radiation grafted membranes for polymer electrolyte fuel cells. Fuel Cells 5:317–335

    Article  Google Scholar 

  49. Sauguet L, Ameduri B, Boutevin B (2006) Fluorinated, crosslinkable terpolymers based on vinylidene fluoride and bearing sulfonic acid side groups for fuel-cell membranes. J Polym Sci A Polym Chem 44:4566–4578

    Article  Google Scholar 

  50. Yandrasits MA, Hamrock SJ, Grootaert WM, Guerra MA, Jing N (2006) US Patent 7,074,841 polymer electrolyte membranes crosslinked by nitrile trimerization

    Google Scholar 

  51. Yandrasits MA, Hamrock SJ, Hintzer K, Thaler A, Fukushi T, Jing N, Lochhaas KH (2007) US Patent 7,265,162 bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam

    Google Scholar 

  52. Yandrasits M, Lindell M, Schaberg M, Kurkowski M (2017) Increasing fuel cell efficiency by using ultra-low equivalent weight ionomers. Electrochem Soc Interface Spring 26(1):49–53. https://doi.org/10.1149/2.F05171if

    Article  Google Scholar 

  53. Desmarteau DD (1995) Novel perfluorinated ionomers and ionenes. J Fluor Chem 72:203–208

    Article  Google Scholar 

  54. Hamrock SJ (2010) U.S. department of energy hydrogen program 2010 annual merit review proceedings. http://www.hydrogen.energy.gov/pdfs/review10/fc034hamrock_2010_o_web.pdf

  55. Herring AM (2006) Inorganic polymer composite membranes for proton exchange membrane fuel cells. Polym Rev 46:245–296

    Google Scholar 

  56. Schaberg MS, Abulu J, Haugen GM, Emery M, O'Conner SJ, Xiong PN, Hamrock SJ (2010) New multi acid side-chain ionomers for proton exchange membrane fuel cells. ECS Trans 33:627–633

    Article  Google Scholar 

  57. Iler R (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  58. Mauritz KA, Hassan MK (2007) Nanophase separated perfluorinated ionomers as sol-gel polymerization templates for functional inorganic oxide nanoparticles. Polym Rev 47:543–565

    Article  Google Scholar 

  59. Abbaraju RR, Dasgupta N, Virkar AV (2008) Composite nafion membranes containing nanosize TiO2/SnO2 for proton exchange membrane fuel cells. J Electrochem Soc 155:B1307–B1313

    Article  Google Scholar 

  60. Kreuer K-D, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678

    Article  Google Scholar 

  61. Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154

    Article  Google Scholar 

  62. Malhotra S, Datta R (1997) Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells. J Electrochem Soc 144:L23–L26

    Article  Google Scholar 

  63. Meng F, Aieta NV, Dec SF, Horan JL, Williamson D, Frey MH, Pham P, Turner JA, Yandrasits MA, Hamrock SJ, Herring AM (2007) Structural and transport effects of doping perfluorosulfonic acid polymers with the heteropoly acids, H3PW12O40 or H4SiW12O40. Electrochim Acta 53:1372–1378

    Article  Google Scholar 

  64. Alberti G, Casciola M, Capitani D, Donnadio A, Narducci R, Pica M, Sganappa M (2007) Novel Nafion-zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim Acta 52:8125–8132

    Article  Google Scholar 

  65. Coms FD, Han Liu H, Owejan JE (2008) Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions. ECS Trans 16:1735–1747

    Article  Google Scholar 

  66. Trogadas P, Parrondo J, Ramani V (2008) Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free-radical scavenger. Electrochem Solid State Lett 11(7):B113–B116

    Article  Google Scholar 

  67. Frey MH, Hamrock SJ, Haugen GM, Pham PT (2009) US Patent 7,572,534 fuel cell membrane electrode assembly

    Google Scholar 

  68. Watanabe M, Uchida H, Seki Y, Emori M, Stonehart P (1996) Self-humidifying polymer electrolyte membranes for fuel cells. J Electrochem Soc 143:3847–3852

    Article  Google Scholar 

  69. Endoh E, Hommura S, Terazono S, Widjaja H, Anzai J (2007) Degradation mechanism of the PFSA membrane and influence of deposited Pt in the membrane. ECS Trans 11:1083–1091

    Article  Google Scholar 

  70. Cipollini NE (2007) Chemical aspects of membrane degradation. ECS Trans 11:1071–1082

    Article  Google Scholar 

  71. Haugen GM, Meng F, Aieta NV, Horan JL, Kuo M-C, Frey MH, Hamrock SJ, Herring AM (2007) The effect of heteropoly acids on stability of PFSA PEMs under fuel cell operation. Electrochem Solid State Lett 10:B51–B55

    Article  Google Scholar 

  72. Liu H, Coms FD, Zhang J, Gasteiger HA, LaConti AB (2009) Chemical degradation: correlations between electrolyzer and fuel cell findings. In: Büchi FN, Inaba M, Schmidt TJ (eds) Chemical degradation: correlations between electrolyzer and fuel cell findings polymer electrolyte fuel cell durability. Springer, New York, pp 71–117

    Google Scholar 

  73. Friedmann R, Van Nguyen T (2010) Optimization of the microstructure of the cathode catalyst layer of a PEMFC for two-phase flow. J Electrochem Soc 157:B260–B265

    Article  Google Scholar 

  74. Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76

    Article  Google Scholar 

  75. Shao Y, Yin G, Wang Z, Gao Y (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167:235

    Article  Google Scholar 

  76. Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson DP, Liu ZS, Holdcroft SJ (2006) High temperature PEM fuel cells. Power Sources 160:872

    Article  Google Scholar 

  77. Xu H, Song Y, Kunz HR, Fenton JM (2005) Effect of elevated temperature and reduced relative humidity on ORR kinetics for PEM fuel cells. J Electrochem Soc 152:A1828–A1836

    Article  Google Scholar 

  78. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature dependence of the electrode kinetics of oxygen reduction at the Platinum/Nafion® Interface: a microelectrode investigation. J Electrochem Soc 139:2530

    Article  Google Scholar 

  79. Chen YX, Li MF, Liao LW, Xu J, Ye S (2009) A thermostatic cell with gas diffusion electrode for oxygen reduction reaction under fuel cell relevant conditions. Electrochem Commun 11:1434–1436

    Article  Google Scholar 

  80. Kucernak AR, Toyoda E (2008) Studying the oxygen reduction and hydrogen oxidation reactions under realistic fuel cell conditions. Electrochem Commun 10:1728–1731

    Article  Google Scholar 

  81. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35

    Article  Google Scholar 

  82. Thompsett D (2003) Pt alloys as oxygen reduction catalysts. In: Vielstien W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 3. Wiley, West Sussex, pp 467–480

    Google Scholar 

  83. Tada T (2003) High dispersion catalysts including novel carbon supports. In: Vielstien W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells: fundamentals, technology and applications, vol 3. Wiley, West Sussex, pp 481–488

    Google Scholar 

  84. Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558

    Article  Google Scholar 

  85. Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43:179–188

    Article  Google Scholar 

  86. Debe MK, Schmoeckel AK, Hendricks SM, Vernstrom GD, Haugen GM, Atanasoski RT (2006) Durability aspects of nanostructured thin film catalysts for pem fuel cells. ECS Trans 1:51–66

    Article  Google Scholar 

  87. Trogadas P, Ramani V (2007) Pt/C/MnO2 hybrid electrocatalysts for degradation mitigation in polymer electrolyte fuel cells. J Power Sources 174(1):159–163

    Article  Google Scholar 

  88. Brooker RP, Baker P, Kunz HR, Bonville LJ, Parnas R (2009) Effects of silicotungstic acid addition to the electrodes of polymer electrolyte membrane fuel cells. J Electrochem Soc 156:B1317–B1321

    Article  Google Scholar 

  89. Paddison SJ, Kreuer KD, Maier J (2006) About the choice of the protogenic group in polymer electrolyte membranes: ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Phys Chem Chem Phys 8:4530–4542

    Article  Google Scholar 

  90. Horan JL, Genupur A, Ren H, Sikora BJ, Kuo MC, Meng F, Dec SF, Haugen GM, Yandrasits MA, HSJ MA, Frey MH, Herring AH (2009) Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications. ChemSusChem 2:226–229

    Article  Google Scholar 

  91. Doyle M, Choi SK, Proulx G (2000) High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. J Electrochem Soc 147:34

    Article  Google Scholar 

  92. Zhou Z, Li S, Zhang Y, Liu M, Li W (2005) Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole. J Am Chem Soc 127:10824–10825

    Article  Google Scholar 

  93. Jia L, Nguyen D, Halleý JW, Pham P, Lamanna W, Hamrock S (2009) Proton transport in HTFSI-TFSI-EMI mixtures: experiment and theory. J Electrochem Soc 156:B136–B151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hamrock, S.J., Herring, A.M. (2019). Proton Exchange Membrane Fuel Cells: High-Temperature, Low-Humidity Operation. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_155

Download citation

Publish with us

Policies and ethics