Skip to main content

Differential Therapy Based on Tumor Heterogeneity in Pancreatic Cancer

  • Reference work entry
  • First Online:
  • 1964 Accesses

Abstract

A major impediment to the effective treatment of patients with pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, which is reflected in an equally diverse pattern of clinical outcomes and in response to therapies. An efficient strategy in which PDAC samples were collected by endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) or surgery and preserved as patient-derived xenografts (PDX) and as a primary culture of epithelial cells was developed. Multiomics analysis, including transcriptomic and pharmacological studies, was performed on these PDX. As expected, significant molecular and phenotypic heterogeneity was observed. However, bioinformatic analysis was able to discriminate between patients with bad or better prognosis. Primary cultures of cells allowed to analyze their relative sensitivity to standard drugs (gemcitabine, 5FU, oxaliplatin, irinotecan active metabolite SN-38, and docetaxel), as well as more original anticancer drugs such as 5-aza-2′-deoxycytidine (5-AZA-dC) or the nicotinamide phosphoribosyltransferase (NAMPT) inhibitor FK866. The establishment of chemograms in vitro allowed to identify individual profiles of drug sensitivity. Remarkably, the response was extremely heterogeneous and patient dependent. It was also found that transcriptome analysis predicts the anticancer drug sensitivity of PDAC cells. Furthermore, an original strategy to identify PDAC dependent on the MYC oncogene and consequently more sensitive to bromodomain and extraterminal inhibitors (BETi) was developed. In conclusion, using this original approach, it was found that multiomics analysis of PDX could predict the clinical outcome of patients, the sensitivity to anticancer drugs, and the pharmacological response to new therapeutic strategies. This opens up a future setting in individualized medicine, aiming to stratify patients in order to select the most appropriate treatments for each group.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  Google Scholar 

  2. Kindler HL, Ioka T, Richel DJ, Bennouna J, Letourneau R, Okusaka T, et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. Lancet Oncol. 2011;12(3):256–62.

    Article  CAS  Google Scholar 

  3. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada clinical trials group. Journal Clin Oncol. 2007;25(15):1960–6.

    Article  CAS  Google Scholar 

  4. Van Cutsem E, Vervenne WL, Bennouna J, Humblet Y, Gill S, Van Laethem JL, et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol. 2009;27(13):2231–7.

    Article  Google Scholar 

  5. Costello E, Greenhalf W, Neoptolemos JP. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol. 2012;9(8):435–44.

    Article  CAS  Google Scholar 

  6. Iovanna J, Mallmann MC, Goncalves A, Turrini O, Dagorn JC. Current knowledge on pancreatic cancer. Front Oncol. 2012;2:6. PubMed Pubmed Central PMCID: 3356035.

    Article  Google Scholar 

  7. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607–20. PubMed Pubmed Central PMCID: 3062508.

    Article  Google Scholar 

  8. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.

    Article  CAS  Google Scholar 

  9. Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15(6):2403–13.

    Article  CAS  Google Scholar 

  10. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3. PubMed Pubmed Central PMCID: 3755490.

    Article  CAS  Google Scholar 

  11. Noll EM, Eisen C, Stenzinger A, Espinet E, Muckenhuber A, Klein C, et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat Med. 2016;22(3):278–87. PubMed Pubmed Central PMCID: 4780258.

    Article  CAS  Google Scholar 

  12. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47(10):1168–78. PubMed Pubmed Central PMCID: 4912058.

    Article  CAS  Google Scholar 

  13. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.

    Article  CAS  Google Scholar 

  14. Duconseil P, Gilabert M, Gayet O, Loncle C, Moutardier V, Turrini O, et al. Transcriptomic analysis predicts survival and sensitivity to anticancer drugs of patients with a pancreatic adenocarcinoma. Am J Pathol. 2015;185(4):1022–32.

    Article  CAS  Google Scholar 

  15. Geer RJ, Brennan MF. Prognostic indicators for survival after resection of pancreatic adenocarcinoma. American journal of surgery. 1993;165(1):68–72. discussion −3. PubMed.

    Article  CAS  Google Scholar 

  16. Moon HJ, An JY, Heo JS, Choi SH, Joh JW, Kim YI. Predicting survival after surgical resection for pancreatic ductal adenocarcinoma. Pancreas. 2006;32(1):37–43.

    Article  Google Scholar 

  17. Sohn TA, Yeo CJ, Cameron JL, Koniaris L, Kaushal S, Abrams RA, et al. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg. 2000;4(6):567–79.

    Article  CAS  Google Scholar 

  18. You DD, Lee HG, Heo JS, Choi SH, Choi DW. Prognostic factors and adjuvant chemoradiation therapy after pancreaticoduodenectomy for pancreatic adenocarcinoma. J Gastroint Surg. 2009;13(9):1699–706.

    Article  Google Scholar 

  19. Wasif N, Ko CY, Farrell J, Wainberg Z, Hines OJ, Reber H, et al. Impact of tumor grade on prognosis in pancreatic cancer: should we include grade in AJCC staging? Ann Surg Oncol. 2010;17(9):2312–20. PubMed Pubmed Central PMCID: 2924500.

    Article  Google Scholar 

  20. Rochefort MM, Ankeny JS, Kadera BE, Donald GW, Isacoff W, Wainberg ZA, et al. Impact of tumor grade on pancreatic cancer prognosis: validation of a novel TNMG staging system. Ann Surg Oncol. 2013;20(13):4322–9.

    Article  Google Scholar 

  21. Penchev VR, Rasheed ZA, Maitra A, Matsui W. Heterogeneity and targeting of pancreatic cancer stem cells. Clin Cancer Res. 2012;18(16):4277–84. PubMed Pubmed Central PMCID: 3422767.

    Article  CAS  Google Scholar 

  22. Issa JP. Decitabine. Curr Opin Oncol. 2003;15(6):446–51.

    Article  CAS  Google Scholar 

  23. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.

    Article  CAS  Google Scholar 

  24. Blum W, Schwind S, Tarighat SS, Geyer S, Eisfeld AK, Whitman S, et al. Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood. 2012;119(25):6025–31. PubMed Pubmed Central PMCID: 3383015.

    Article  CAS  Google Scholar 

  25. Cowan LA, Talwar S, Yang AS. Will DNA methylation inhibitors work in solid tumors? A review of the clinical experience with azacitidine and decitabine in solid tumors. Epigenomics. 2010;2(1):71–86.

    Article  CAS  Google Scholar 

  26. Ehrlich M. Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Curr Top Microbiol Immunol. 2006;310:251–74.

    CAS  PubMed  Google Scholar 

  27. Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol. 2003;4(6):351–8.

    Article  CAS  Google Scholar 

  28. Teodoridis JM, Strathdee G, Brown R. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat. 2004;7(4–5):267–78.

    Article  CAS  Google Scholar 

  29. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–63.

    Article  CAS  Google Scholar 

  30. Omura N, Goggins M. Epigenetics and epigenetic alterations in pancreatic cancer. Int J Clin Exp Pathol. 2009;2(4):310–26. PubMed Pubmed Central PMCID: 2615589.

    CAS  PubMed  Google Scholar 

  31. Gayet O, Loncle C, Duconseil P, Gilabert M, Lopez MB, Moutardier V, et al. A subgroup of pancreatic adenocarcinoma is sensitive to the 5-aza-dC DNA methyltransferase inhibitor. Oncotarget. 2015;6(2):746–54. PubMed Pubmed Central PMCID: 4359252.

    Article  Google Scholar 

  32. Li A, Omura N, Hong SM, Goggins M. Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biol Ther. 2010;9(4):321–9. PubMed Pubmed Central PMCID: 2920347.

    Article  CAS  Google Scholar 

  33. Olesen UH, Christensen MK, Bjorkling F, Jaattela M, Jensen PB, Sehested M, et al. Anticancer agent CHS-828 inhibits cellular synthesis of NAD. Biochem Biophys Res Commun. 2008;367(4):799–804.

    Article  CAS  Google Scholar 

  34. Bi TQ, Che XM. Nampt/PBEF/visfatin and cancer. Cancer Biol Ther. 2010;10(2):119–25.

    Article  CAS  Google Scholar 

  35. Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 2003;63(21):7436–42.

    CAS  PubMed  Google Scholar 

  36. Holen K, Saltz LB, Hollywood E, Burk K, Hanauske AR. The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Investig New Drugs. 2008;26(1):45–51.

    Article  CAS  Google Scholar 

  37. Hovstadius P, Larsson R, Jonsson E, Skov T, Kissmeyer AM, Krasilnikoff K, et al. A phase I study of CHS 828 in patients with solid tumor malignancy. Clin Can Res. 2002;8(9):2843–50.

    CAS  Google Scholar 

  38. von Heideman A, Berglund A, Larsson R, Nygren P. Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemother Pharmacol. 2010;65(6):1165–72.

    Article  CAS  Google Scholar 

  39. Bi TQ, Che XM, Liao XH, Zhang DJ, Long HL, Li HJ, et al. Overexpression of Nampt in gastric cancer and chemopotentiating effects of the Nampt inhibitor FK866 in combination with fluorouracil. Oncol Rep. 2011;26(5):1251–7.

    CAS  PubMed  Google Scholar 

  40. Travelli C, Drago V, Maldi E, Kaludercic N, Galli U, Boldorini R, et al. Reciprocal potentiation of the antitumoral activities of FK866, an inhibitor of nicotinamide phosphoribosyltransferase, and etoposide or cisplatin in neuroblastoma cells. J Pharmacol Exp Ther. 2011;338(3):829–40.

    Article  CAS  Google Scholar 

  41. Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT, et al. Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Can Res. 2014;20(1):120–30. PubMed Pubmed Central PMCID: 3947324.

    Article  CAS  Google Scholar 

  42. Barraud M, Garnier J, Loncle C, Gayet O, Lequeue C, Vasseur S, et al. A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT. Oncotarget. 2016;7(33):53783–96. PubMed Pubmed Central PMCID: 5288221.

    Article  Google Scholar 

  43. Dunne RF, Hezel AF. Genetics and biology of pancreatic ductal adenocarcinoma. Hematol Oncol Clin North Am. 2015;29(4):595–608.

    Article  Google Scholar 

  44. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501. PubMed Pubmed Central PMCID: 4523082.

    Article  CAS  Google Scholar 

  45. Yachida S, Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer progression. Oncogene. 2013;32(45):5253–60. PubMed Pubmed Central PMCID: 3823715.

    Article  CAS  Google Scholar 

  46. Cohen R, Neuzillet C, Tijeras-Raballand A, Faivre S, de Gramont A, Raymond E. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015;6(19):16832–47. PubMed Pubmed Central PMCID: 4627277.

    Article  Google Scholar 

  47. Mancias JD, Kimmelman AC. Targeting autophagy addiction in cancer. Oncotarget. 2011;2(12):1302–6. PubMed Pubmed Central PMCID: 3282086.

    Article  Google Scholar 

  48. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108(40):16669–74. PubMed Pubmed Central PMCID: 3189078.

    Article  CAS  Google Scholar 

  49. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and cellular biology. 1999;19(1):1–11. PubMed Pubmed Central PMCID: 83860.

    Article  CAS  Google Scholar 

  50. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. PubMed Pubmed Central PMCID: 3345192.

    Article  CAS  Google Scholar 

  51. Prendergast GC. Mechanisms of apoptosis by c-Myc. Oncogene. 1999;18(19):2967–87.

    Article  CAS  Google Scholar 

  52. Schmidt EV. The role of c-myc in cellular growth control. Oncogene. 1999;18(19):2988–96.

    Article  CAS  Google Scholar 

  53. Morton JP, Sansom OJ. MYC-y mice: from tumour initiation to therapeutic targeting of endogenous MYC. Mol Oncol. 2013;7(2):248–58.

    Article  CAS  Google Scholar 

  54. Lin WC, Rajbhandari N, Liu C, Sakamoto K, Zhang Q, Triplett AA, et al. Dormant cancer cells contribute to residual disease in a model of reversible pancreatic cancer. Cancer Res. 2013;73(6):1821–30. PubMed Pubmed Central PMCID: 3602120.

    Article  CAS  Google Scholar 

  55. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014;511(7510):483–7.

    Article  CAS  Google Scholar 

  56. Wirth M, Mahboobi S, Kramer OH, Schneider G. Concepts to target MYC in pancreatic cancer. Mol Cancer Ther. 2016;15(8):1792–8.

    Article  CAS  Google Scholar 

  57. Annibali D, Whitfield JR, Favuzzi E, Jauset T, Serrano E, Cuartas I, et al. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nat Commun. 2014;5:4632. PubMed Pubmed Central PMCID: 4143920.

    Article  CAS  Google Scholar 

  58. Fletcher S, Prochownik EV. Small-molecule inhibitors of the Myc oncoprotein. Biochim Biophys Acta. 2015;1849(5):525–43. PubMed Pubmed Central PMCID: 4169356.

    Article  CAS  Google Scholar 

  59. McKeown MR, Bradner JE. Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med. 2014;01:4(10). PubMed Pubmed Central PMCID: 4200208.

    Google Scholar 

  60. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, et al. Modelling Myc inhibition as a cancer therapy. Nature. 2008;455(7213):679–83. PubMed Pubmed Central PMCID: 4485609.

    Article  CAS  Google Scholar 

  61. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146(6):904–17. PubMed Pubmed Central PMCID: 3187920.

    Article  CAS  Google Scholar 

  62. Kandela I, Jin HY, Owen K, Reproducibility Project: Cancer B. Registered report: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. eLife. 2015;4:e07072. PubMed Pubmed Central PMCID: 4480271.

    PubMed  PubMed Central  Google Scholar 

  63. Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21(10):1163–71. PubMed Pubmed Central PMCID: 4959788.

    Article  CAS  Google Scholar 

  64. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46(4):364–70. PubMed Pubmed Central PMCID: 4086945.

    Article  CAS  Google Scholar 

  65. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH, et al. C-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood. 2014;123(7):1040–50. PubMed Pubmed Central PMCID: 3924926.

    Article  CAS  Google Scholar 

  66. Trabucco SE, Gerstein RM, Evens AM, Bradner JE, Shultz LD, Greiner DL, et al. Inhibition of bromodomain proteins for the treatment of human diffuse large B-cell lymphoma. Clin Can Res. 2015;21(1):113–22. PubMed PMID: 25009295. Pubmed Central PMCID: 4286476.

    Article  CAS  Google Scholar 

  67. Bian B, Bigonnet M, Gayet O, Loncle C, Maignan A, Gilabert M, et al. Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts. EMBO Mol Med. 2017;9:482–97. PubMed PMID: 28275007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Iovanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Iovanna, J., Bian, B., Bigonnet, M., Dusetti, N. (2018). Differential Therapy Based on Tumor Heterogeneity in Pancreatic Cancer. In: Neoptolemos, J., Urrutia, R., Abbruzzese, J., Büchler, M. (eds) Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7193-0_94

Download citation

Publish with us

Policies and ethics