Skip to main content

Applications of Radioisotopes

  • Reference work entry
  • First Online:
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Background radiation:

The radiation given off by natural radioisotopes and cosmic sources.

Detection limits:

The smallest amount of radiation which can be discriminated from background radiation.

Dirty bomb:

A conventional chemical bomb laced with radioactivity intended to cause mass panic and commercial havoc.

Ionizing:

The result of adding or removing charge from a neutral atom.

IND:

Improvised nuclear device, an attempt at a nuclear weapon generally assumed to be made by a terrorist organization.

Isotope:

An element may have different numbers of neutrons in a given atom, but the element is defined by the number of protons in the nucleus. The different isotopes of an element will all have the same number of protons but different numbers of neutrons.

NORM:

Naturally occurring radioactive material, radioisotopes.

Nucleus:

The center of an atom containing all the neutrons and protons which constitute the overwhelming majority of the atom’s mass.

Nuclide:

A commonly used term...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. IAEA (1963) Radioisotope applications in industry; a survey of radioisotope applications classified by industry or economic activity, with selected references to the international literature. International Atomic Energy Agency, Vienna

    Google Scholar 

  2. Bowen HJM (1969) Chemical applications of radioisotopes. Methuen, London

    Google Scholar 

  3. IAEA (1963) Symposium on the application of radioisotopes in hydrology. International Atomic Energy Agency, Vienna

    Google Scholar 

  4. IAEA (1963) Symposium on the use and application of radioisotopes and radiation in the control of plant and animal insect pests. International Atomic Energy Agency, Vienna

    Google Scholar 

  5. IAEA (1968) Panel on the application of radioisotopes in the pulp and paper industry. International Atomic Energy Agency, Vienna

    Google Scholar 

  6. Wasserburg GJ, Busso M, Gallino R, Nollett KM (2006) Short-lived nuclei in the early solar system: possible AGB sources. Nucl Phys A 777:5–69

    Article  Google Scholar 

  7. Van Schmus WR (1995) Chapter 17: Natural radioactivity of the crust and mantle. In: Global earth physics. American Geophysical Union, Washington, DC

    Google Scholar 

  8. Nakanishi T, Kusakabe M, Aono T, Yamada M (2009) Simultaneous measurements of cosmogenic radionuclides 32P, 33P and 7Be in dissolved and particulate forms in the upper ocean. J Radioanal Nucl Chem 278(3):769–776

    Article  Google Scholar 

  9. Taricco C, Bhandari N, Colombetti P, Verma N, Vivaldo G (2007) Experimental set-up and optimization of a gamma-ray spectrometer for measurement of cosmogenic radionuclides in meteorites. Nucl Instr Meth Phys Res A 572(1):241–243

    Article  Google Scholar 

  10. Aldehan A, Hedfors J, Possnert G, Kulan A, Berggren A-M, Soderstrom C (2008) Atmospheric impact on beryllium isotopes as a solar activity proxy. Geophys Res Lett 35:L21812

    Article  Google Scholar 

  11. CDC (2005) Radioactive fallout from global weapons testing. US Centers for Disease Control, Atlanta

    Google Scholar 

  12. Parsons PA (2002) Radiation hormesis: challenging LNT theory via ecological and evolutionary considerations. Health Phys 82(4):513–516

    Article  Google Scholar 

  13. Bhandari N, Bhattacharya SK, Somayajulu BLK (1978) Cosmogenic radioisotopes in the Dhajala chondrite: implications to variation in cosmic ray fluxes in the interplanetary space. Earth Planet Sci Lett 40:194–202

    Article  Google Scholar 

  14. Phillips FM, Zreda MG, Smith SS, Elmore D, Kubik PW, Dorn RI, Roddy DJ (1991) Age and geomorphic history of Meteor Crater, Arizona from cosmogenic 36Cl and 14C in rock varnish. Geochem Cosmochem Acta 55:2695–2698

    Article  Google Scholar 

  15. Giffin D, Corbett DR (2003) Evaluation of sediment dynamics in coastal systems via short-lived radioisotopes. J Mar Sys 42:83–96

    Article  Google Scholar 

  16. Hedges REM (1979) Radioisotope clocks in archaeology. Nature 281:19–24. doi:10.1038/281019a0

    Article  Google Scholar 

  17. McKeever SWS (1985) Thermoluminescence of solids. Cambridge University Press, New York

    Book  Google Scholar 

  18. McKeever SWS (2001) Optically stimulated luminescence dosimetry. Nucl Instr Meth B 184:29–54

    Article  Google Scholar 

  19. Regulla DF (2005) ESR spectrometry: a future-oriented tool for dosimetry and dating. Appl Radiat Isot 62(2):117–127

    Article  Google Scholar 

  20. Yukihara EG, McKeever SWS (2011) Optically stimulated luminescence: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  21. Haskell EH, Difley R, Kenner G, Hayes R, Snyder K, Gustafson D (1999) A comparison of optical stimulated luminescence dating methods applied to eolian sands from the Mohave Desert in Southern Nevada. Quat Geochronol 18:235–242

    Google Scholar 

  22. Peplow DE (1999) Fiestaware™ radiography. Phys Teach 37(5):316–318

    Article  Google Scholar 

  23. Kamal K (2016) The best aircraft for close air support in the twenty-first century. Air Space Power J 30(3):39–53

    Google Scholar 

  24. Toepker T (1996) Thorium and yttrium in gas lantern mantles. Am J Phys 64:109. http://dx.doi.org/10.1119/1.18463

    Article  Google Scholar 

  25. Schirmer A, Kersting M, Uschmann K (2016) Occupational doses from the use of thoriated optical components. Health Phys 111(2):106

    Article  Google Scholar 

  26. Crim EM, Bradley TD (1995) Measurements of air concentrations of thorium during grinding and welding. Health Phys 68(5):719–722

    Article  Google Scholar 

  27. Sharpe WD (1978) The New Jersey radium dial painters: a classic in occupational carcinogenesis. Bull Hist Med 52(4):560–570

    Google Scholar 

  28. Garrison WM, Maloney JL (2005) Lanthanum additions and the toughness of ultra-high strength steels and the determination of appropriate lanthanum additions. Mater Sci Eng A 403(1):299–310

    Article  Google Scholar 

  29. Zou H, Song M, Yi F, Bian L, Liu P, Zhang S (2016) Simulated-sunlight-activated photocatalysis of Methyl Orange using carbon and lanthanum co-doped Bi2O3–TiO2 composite. J Alloys Compd 680:54–59

    Article  Google Scholar 

  30. Farkas J, Mohacsi-Farkas C (2011) History and future of food irradiation. Food Sci Technol 22:121–126

    Article  Google Scholar 

  31. Wang Q, Fu S, Yu T (1994) Emulsion polymerization. Prog Polym Sci 19:703–753

    Article  Google Scholar 

  32. Witkowska E, Szczepaniak K, Biziuk M (2005) Some applications of neutron activation analysis: a review. J Radioanal Nucl Chem 265(1):141–150

    Article  Google Scholar 

  33. Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J (2009) Advances in neutron radiography and tomography. J Phys D Appl Phys 42(12):1–21

    Google Scholar 

  34. Fast LD (2012) Developments in the prevention of transfusion-associated graft-versus-host-disease. Br J Heamatol 158(5):563–568

    Article  Google Scholar 

  35. Parsonnet V, Driller J, Cook D, Rizvi SA (2006) Thirty-one years of clinical experience with “nuclear-powered” pacemakers. Pacing Clin Electrophysiol 29:195–200

    Article  Google Scholar 

  36. O’Brien RC, Amrosi RM, Bannister NP, Howe SD, Atkinson HV (2008) Safe radioisotope thermoelectric generators and heat sources for space applications. J Nucl Mater 377(3):506–521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bruce Hayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hayes, R.B. (2018). Applications of Radioisotopes. In: Tsoulfanidis, N. (eds) Nuclear Energy. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6618-9_952

Download citation

Publish with us

Policies and ethics